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Abstract

The calculation of capital requirements for financial institutions entails a reevaluation of the
company’s assets and liabilities at some future point in time for a (large) number of stochas-
tic forecasts of economic and firm-specific variables. The complexity of this nested valuation
problem leads companies to struggle with the implementation.

Relying on a well-known method for pricing non-European derivatives, the current paper
proposes and analyzes a novel approach to this computational problem based on least-squares
regression and Monte Carlo simulations. We study convergence of the algorithm and analyze the
resulting estimate for practically relevant risk measures. Importantly, we address the problem
of how to choose the regressors (basis functions), and show that an optimal choice is given by
the left singular functions of the corresponding valuation operator. Our numerical examples
demonstrate that the algorithm can produce accurate results at relatively low computational
costs, particularly when relying on the optimal basis functions.
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1 Introduction

Many financial risk management applications entail a reevaluation of the company’s assets and
liabilities at some time horizon τ – sometimes called a risk horizon – for a large number of real-
izations of economic and firm-specific (state) variables. The resulting empirical loss distribution is
then applied to derive risk measures such as Value-at-Risk (VaR) or Expected Shortfall (ES), which
serve as the basis for capital requirements within several regulatory frameworks such as Basel III
for banks and Solvency II for insurance companies. However, the high complexity of this nested
computation structure leads firms to struggle with the implementation (Bauer et al., 2012).1

The present paper proposes an alternative approach based on least-squares regression and Monte
Carlo simulations akin to the well-known Least-Squares Monte Carlo method (LSM) for pricing
non-European derivatives introduced by Longstaff and Schwartz (2001). Analogously to the LSM
pricing method, this approach relies on two approximations (Clément et al., 2002): On the one
hand, the capital random variable, which can be represented as a risk-neutral conditional expected
value at the risk horizon τ , is replaced by a finite linear combination of functions of the state
variables, so-called basis functions. As the second approximation, Monte Carlo simulations and
least-squares regression are employed to estimate the coefficients in this linear combination. Hence,
for each realization of the state variables, the resulting linear combination presents an approximate
realization of the capital at τ , and the resulting sample can be used for estimating relevant risk
measures.

Although this approach is increasingly popular in practice for calculating economic capital
particularly in the insurance industry (Barrie and Hibbert, 2011; Milliman, 2013; DAV, 2015)
and has been used in several applied research contributions (Floryszczak et al., 2016; Pelsser and
Schweizer, 2016, e.g.), these papers do not provide a detailed analysis of the properties of this
algorithm or insights on how to choose the basis functions. Our work closes this gap in literature.

We begin our analysis by introducing our setting and the algorithm. As an important innovation,
we frame the estimation problem via a valuation operator that maps future payoffs (as functionals
of the state variables) to the conditional expected value at the risk horizon. In particular, we base
our definition on a hybrid probability measure since simulations for risk estimation before the risk
horizon are carried out under the physical measure whereas simulations for valuation after the risk
horizon are carried out under a risk-neutral measure.

We formally establish convergence of the algorithm for the risk distribution (in probability) and
for families of risk measures under general conditions when taking limits sequentially in the first and
second approximation. In addition, by relying on results from Newey (1997) on the convergence of
series estimators, we present conditions for the joint convergence of the two approximations in the
general case and more explicit results for the practically relevant case of orthonormal polynomials.2

We then analyze in more detail the properties of the estimator for the important special case
of VaR, which serves as the risk measure for regulatory frameworks such as Basel III or Solvency
II. By building on ideas from Gordy and Juneja (2010), we show that for a fixed number of basis
functions, the least-squares estimation of the regression approximation, while unbiased when viewed
as an estimator for the individual loss, carries a positive bias term for this tail risk measure. It is
important to note, however, that this result only pertains to the regression approximation but not
the approximation of the actual loss variables via the linear combination of the basis functions –
which is the crux of the algorithm. In particular, the adequacy of the estimate crucially depends

1As a consequence, many companies rely on approximations within so-called standard models or standardized
approaches, which are usually not able to accurately reflect an company’s risk situation and may lead to deficient
outcomes (Liebwein, 2006; Pfeifer and Strassburger, 2008)

2We thank Giuseppe Benedetti for pointing us to this issue of joint convergence.
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on the choice of basis functions.
This is where the operator formulation becomes especially useful. By expressing the valuation

operator via its singular value decomposition (SVD), we show that under certain conditions, the
(left) singular functions present an optimal choice for the basis functions. More precisely, we
demonstrate that these singular functions approximate the valuation operator – and, thus, the
distributions of relevant capital levels – in an optimal manner. The intuition is that similarly to an
SVD for a matrix, the singular functions provide the most important dimensions in spanning the
image space of the operator.

We comment on the joint convergence of the LSM algorithm under this choice and also the
calculation of the singular functions. While in general the decomposition has to be carried out nu-
merically, for certain classes of models it is possible to derive analytic expressions. As an important
example class for applications, we discuss the calculation of the SVD – and, thus, the derivation of
optimal basis functions – for models with Gaussian transition densities. In this case, it is straight-
forward to show that the underlying assumptions are satisfied. And, by following ideas from Khare
and Zhou (2009), it is possible to derive the singular functions, which take the form of products of
Hermite polynomials of linearly transformed states, by solving a related eigenvalue problem.

We illustrate our theoretical results considering two examples from life insurance in the context
of annutization options. We first we consider a simple Guaranteed Annuity Option (GAO) within a
pure endowment insurance contract in the Vasicek (1977) stochastic interest rate model. Following
Boyle and Hardy (2003), we obtain a closed form solution for the valuation problem at the risk
horizon so that we can conveniently compare the approximated realizations of the loss distribution
with the exact ones. Our results demonstrate that the algorithm can produce accurate results at
relatively low computational costs, although the interplay of the sample variance and the functional
approximation is finical. We find that optimal basis functions improve the performance of the
algorithm when compared to alternative basis functions with a different span.

As a second example, we consider popular annuitization guarantees within Variable Annu-
ity contracts, so-called Guaranteed Minimum Income Benefits (GMIBs). In a setting with three
stochastic risk factors (investment fund, interest, and mortality), we demonstrate that the algo-
rithm still delivers reliable results when relying on sufficiently many basis functions and simulations.
Here we emphasize that the optimal choice given by the singular functions not only determines the
functional class – which are Hermite polynomials in this case, although of course different classes
of univariate polynomials will generate the same span. But they also specify the most important
combinations of stochastic factors, an indeed in our setting it turns out that higher-order combi-
nations of certain risk factors are more important than lower-order combinations of others.3 This
latter aspect is very relevant in practical settings with high-dimensional state vectors, so that our
results provide immediate guidance for these pressing problems.

Related Literature and Organization of the Paper

Our approach is inspired by the LSM approach for derivative pricing and relies on corresponding
results (Carriere, 1996; Tsitsiklis and Van Roy, 2001; Longstaff and Schwartz, 2001; Clément et al.,
2002). A similar regression-based algorithm for risk estimation is independently studied in Broadie
et al. (2015). Their results are similar to our sequential convergence results in Section 3.1, and the
authors additionally introduce a weighted version of their regression algorithm. Moreover, Benedetti
(2016) provides joint convergence results under an alternative set of conditions. However, these
authors do not contemplate how to optimally choose the basis functions – although they emphasize
the importance of this choice – which is a key contribution of our paper.

3We thank Baozhong Yang for pointing us in this direction.
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As already indicated, the LSM approach enjoys popularity in the context of calculating risk
capital for life insurance liabilities in practice and applied research, so that providing a theoretical
foundation and guidance for its application are key motivating factors for this paper. A number
of recent contributions discuss the so-called replicating portfolio approach as an alternative that
enjoys certain advantages (Cambou and Filipović, 2016, e.g.), and Pelsser and Schweizer (2016)
point out that the difference between the LSM versus the replicating portfolio calculation aligns
with the so-called regression-now versus the so-called regression-later algorithm, respectively, for
non-European option pricing (Glasserman and Yu, 2002). While a detailed comparison is beyond
the scope of this paper, we note that although indeed in simple settings the performance of regress-
later approaches appears superior (Beutner et al., 2013), the application comes with several caveats
regarding the choice of the basis function and other complications in high-dimensional settings
(Pelsser and Schweizer, 2016; Ha and Bauer, 2016).

The remainder of the paper is structured as follows: Section 2 lays out the simulation framework
and the algorithm; Section 3 addresses convergence of the algorithm and analyzes the estimator in
special cases; Section 4 discusses optimal basis functions and derives them in models with Gaussian
transition densities; Section 5 provides the numerical examples; and, finally, Section 6 concludes.
Proofs and technical details are relegated to the Appendix.

2 The LSM Approach

2.1 Simulation Framework

We assume that investors can trade continuously in a frictionless financial market with time finite
horizon T corresponding to the longest-term asset to liability of the company in view. Let (Ω,F ,F =
(Ft)t∈[0,T ],P) be a complete filtered probability space on which all relevant quantities exist, where
P denotes the physical measure. We assume that all random variables in what follows are square-
integrable (in L2(Ω,F ,P)). The sigma algebra Ft represents all information about the market up
to time t, and the filtration F is assumed to satisfy the usual conditions.

The uncertainty with respect to the company’s future assets and liabilities arises from the
uncertain development of a number of influencing factors, such as equity returns, interest rates,
demographic or loss indices, etc. We introduce the d-dimensional, sufficiently regular Markov
process Y = (Yt)t∈[0,T ] = (Yt,1, . . . , Yt,d)t∈[0,T ], d ∈ N, the so-called state process, to model this
uncertainty. We assume that all financial assets in the market can be expressed in terms of Y .
Non-financial risk factors can also be incorporated (see e.g. Zhu and Bauer (2011) for a setting
specific to life insurance that includes demographic risk). In this market, we take for granted the
existence of a risk-neutral probability measure (martingale measure) Q equivalent to P under which
payment streams can be valued as expected discounted cash flows with respect to a given numéraire
process (Nt)t∈[0,T ].

4

In financial risk management, we are now concerned with the company’s financial situation at a
certain (future) point in time τ , 0 < τ < T , which we refer to as the risk horizon. More specifically,
based on realizations of the state process Y over the time period [0, τ ] that are generated under the
physical measure P, we need to assess the available capital Cτ , at time τ calculated as the market
value of assets minus liabilities. This amount can serve as a buffer against risks and absorb financial
losses. The capital requirement is then defined via a risk-measure ρ applied to the capital random
variable. For instance, if the capital requirement is cast based on VaR, the capitalization at time

4According to the Fundamental Theorem of Asset Pricing, this assumption is essentially equivalent to the absence
of arbitrage. We refer to Schachermayer (2009) for details.
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τ should be sufficient to cover the net liabilities at least with a probability α, i.e. the additionally
required capital is:

VaRα(−Cτ ) = inf {x ∈ R|P (x+ Cτ ≥ 0) ≥ α} . (1)

The capital at the risk horizon, for each realization of the state process Y , is derived from a
market-consistent valuation approach. While the market value of traded instruments is usually
readily available from the model (“mark-to-market”), the valuation of complex financial positions
on the firm’s asset side such as portfolios of derivatives and/or the valuation of complex liabilities
such as insurance contracts containing embedded options typically requires numerical approaches.
This is the main source of complexity associated with this task, since the valuation needs to be
carried out for each realization of the process Y at time τ , i.e. we face a nested valuation problem.

Formally, the available capital is derived as a (risk-neutral) conditional expected value of dis-
counted cash flows Xt, where for simplicity and to be closer to modeling practice, we assume that
cash flows only occur at the discrete times t = 1, 2, . . . , T and that τ ∈ {1, 2, . . . , T} :

Cτ = EQ

[
T∑
k=τ

Nτ

Nk
Xk

∣∣∣∣∣ (Ys)0≤s≤τ

]
. (2)

Note that within this formulation, interim asset and liability cash flows in [0, τ ] may be aggregated
in the σ(Ys, 0 ≤ s ≤ τ)-measurable position Xτ . Moreover, in contrast to e.g. Gordy and Juneja
(2010), we consider aggregate asset and liability cash flows at times k ≥ τ rather than cash flows
corresponding to individual asset and liability positions. Aside from notational simplicity, the rea-
son for this formulation is that we particularly focus on situations where an independent evaluation
of many different positions is not advisable or feasible as it is for instance the case within economic
capital modeling in life insurance (Bauer et al., 2012).

In addition to current interest rates, security prices, etc., the value of the asset and liability
positions may also depend on path-dependent quantities. For instance, Asian options depend on
the average of a certain price index over a fixed time interval, lookback options depend on the
running maximum, and liability values in insurance with profit sharing mechanisms depend on
entries in the insurer’s bookkeeping system. In what follows, we assume that – if necessary – the
state process Y is augmented so that it contains all quantities relevant for the evaluation of the
available capital and still satisfies the Markov property (Whitt, 1986). Thus, we can write:

Cτ = EQ

[
T∑
k=τ

Nτ

Nk
Xk

∣∣∣∣∣Yτ
]
.

We refer to the state process Y as our model framework. Within this framework, the asset-
liability projection model of the company is given by cash flow projections of the asset-liability
positions, i.e. functionals xk that derive the cash flows Xk based on the current state Yk:

5

Nτ

Nk
Xk = xk (Yk) , τ ≤ k ≤ T.

Hence, each model within our model framework can be identified with an element in a suitable
function space, x = (xτ , xτ+1, ..., xT ) . More specifically, we can represent:

Cτ (Yτ ) =
T∑
j=τ

EQ [xj (Yj)|Yτ ] .

5Similarly to Section 8.1 in Glasserman (2004), without loss of generality, by possibly augmenting the state space
or by changing the numéraire process (see Section 5), we assume that the discount factor can be expressed as a
function of the state variables.
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We now introduce the probability measure P̃ via its Radon-Nikodym derivative:

∂P̃
∂P

=
∂Q
∂P

EP
[
∂Q
∂P |Fτ

] .
Lemma 2.1. We have:

1. P̃(A) = P(A), A ∈ Ft, 0 ≤ t ≤ τ .

2. EP̃ [X| Fτ ] = EQ [X| Fτ ] for every random variable X ∈ F .

Lemma 2.1 implies that we have:

Cτ (Yτ ) =

T∑
j=τ

EP̃ [xj (Yj)|Yτ ] = Lx (Yτ ) , (3)

where the operator:

L : H =

T⊕
j=τ

L2
(
Rd,B, P̃Yj

)
→ L2

(
Rd,B,PYτ

)
(4)

is mapping a model to capital. We call L in (4) the valuation operator. For our applications later
in the text, it is important to note the following:

Lemma 2.2. L is a continuous linear operator.

Moreover, for our results on the optimality of basis functions, we require compactness of the
operator L. The following lemma provides a sufficient condition for L to be compact in terms of
the transition densities of the driving Markov process.

Lemma 2.3. Assume there exists a joint density πYτ ,Yj (y, x), j = τ, τ + 1, ..., T , for Yτ and Yj.
Moreover: ∫

Rd

∫
Rd
πYj |Yτ (y|x)πYτ |Yj (x|y) dy dx <∞,

where πYj |Yτ (y|x) and πYτ |Yj (x|y) denote the transition density and the reverse transition density,
respectively. Then the operator L is compact.

The definition of L implies that a model can be identified with an element of the Hilbert space H
whereas (state-dependent) capital Cτ can be identified with an element of L2(Rd,B,PYτ ). The task
at hand is now to evaluate this element for a given model x = (xτ , . . . , xT ) and to then determine
the capital requirement via a (monetary) risk measure ρ : L2(Rd,B,PYτ ) → R as ρ(Lx), although
the model may change between applications as the exposures may change (e.g. from one year to the
next or when evaluating capital allocations via the gradient of ρ (Bauer and Zanjani, 2016, e.g.)).

One possibility to carry out this computational problem is to rely on nested simulations, i.e.
to simulate a large number of scenarios for Yτ under P and then, for each of these realizations, to
determine the available capital using another simulation step under Q. The resulting (empirical)
distribution can then be employed to calculate risk measures (Lee, 1998; Gordy and Juneja, 2010).
However, this approach is computationally burdensome and, for some relevant applications, may
require a very large number of simulations to obtain results in a reliable range (Bauer et al., 2012).
Hence, in the following, we propose and develop an alternative approach for such situations.
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2.2 Least-Squares Monte-Carlo (LSM) Algorithm

As indicated in the previous section, the task at hand is to determine the distribution of Cτ given
by Equation (3). Here, the conditional expectation causes the primary difficulty for developing a
suitable Monte Carlo technique. This is akin to the pricing of Bermudan or American options,
where “the conditional expectations involved in the iterations of dynamic programming cause the
main difficulty for the development of Monte-Carlo techniques” (Clément et al., 2002). A solution
to this problem was proposed by Carriere (1996), Tsitsiklis and Van Roy (2001), and Longstaff and
Schwartz (2001), who use least-squares regression on a suitable finite set of functions in order to
approximate the conditional expectation. In what follows, we exploit this analogy by transferring
their ideas to our problem.

As pointed out by Clément et al. (2002), their approach consists of two different types of approxi-
mations. Proceeding analogously, as the first approximation, we replace the conditional expectation,
Cτ , by a finite combination of linearly independent basis functions ek(Yτ ) ∈ L2

(
Rd,B,PYτ

)
:

Cτ ≈ Ĉ(M)
τ (Yτ ) =

M∑
k=1

αk · ek(Yτ ). (5)

We then determine approximate P-realizations of Cτ using Monte Carlo simulations. We gener-

ate N independent paths (Y
(1)
t )0≤t≤T , (Y

(2)
t )0≤t≤T ,..., (Y

(N)
t )0≤t≤T , where we generate the Marko-

vian increments under the physical measure for t ∈ (0, τ ] and under the risk-neutral measure for
t ∈ (τ, T ].6 Based on these paths, we calculate the realized cumulative discounted cash flows:

V (i)
τ =

T∑
j=τ

xj

(
Y

(i)
j

)
, 1 ≤ i ≤ N.

We use these realizations in order to determine the coefficients α = (α1, . . . , αM ) in the approxi-
mation (5) by least-squares regression:

α̂(N) = argminα∈RM


N∑
i=1

[
V (i)
τ −

M∑
k=1

αk · ek
(
Y (i)
τ

)]2
 .

Replacing α by α̂(N), we obtain the second approximation:

Cτ ≈ Ĉ(M)
τ (Yτ ) ≈ Ĉ(M,N)

τ (Yτ ) =

M∑
k=1

α̂
(N)
k · ek(Yτ ), (6)

based on which we can then calculate ρ (Lx) ≈ ρ(Ĉ
(M,N)
τ ).

In case the distribution of Yτ , PYτ , is not directly accessible, we can calculate realizations of

Ĉ
(M,N)
τ resorting to the previously generated paths (Y

(i)
t )0≤t≤T , i = 1, . . . , N, or, more precisely,

to the sub-paths for t ∈ [0, τ ]. Based on these realizations, we can determine the corresponding

empirical distribution function and, consequently, an estimate for ρ(Ĉ
(M,N)
τ ). For the analysis of

potential errors when approximating the risk measure based on the empirical distribution function,
we refer to Weber (2007).

6Note that it is possible to allow for multiple inner simulations under the risk-neutral measure per outer simulation
under P as in the algorithm proposed by Broadie et al. (2015). However, as shown in their paper, a single inner
scenario as within our version will be the optimal choice when allocating a finite computational budget. The intuition
is that the inner noise diversifies in the regression approach whereas additional outer scenarios add to the information
regarding the relevant distribution.
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3 Analysis of the Algorithm

3.1 Convergence

The following proposition establishes convergence of the algorithm described in Section 2.2 when
taking limits sequentially:

Proposition 3.1. Ĉ
(M)
τ → Cτ in L2(Rd,B,PYτ ), M → ∞, and Ĉ

(M,N)
τ → Ĉ

(M)
τ , N → ∞, P̃-

almost surely. Furthermore, Z(N) =
√
N
[
Ĉ

(M)
τ − Ĉ(M,N)

τ

]
−→ Normal (0, ξ(M)), where ξ(M) is

provided in Equation (30) in the Appendix.

We note that the proof of this convergence result is related to and simpler than the corresponding
result for the Bermudan option pricing algorithm in Clément et al. (2002) since we do not have to
take the recursive nature into account. The primary point of Proposition 3.1 is the convergence in

probability – and, hence, in distribution – of Ĉ
(M,N)
τ → Cτ implying that the resulting distribution

function of Ĉ
(M,N)
τ presents a valid approximation of the distribution of Cτ for large M and N. The

question of whether ρ(Ĉ
(M,N)
τ ) presents a valid approximation of ρ(Cτ ) depends on the regularity of

the risk measure. In general, we require continuity in L2(Rd,B,PYτ ) as well as point-wise continuity
with respect to almost sure convergence (see Kaina and Rüschendorf (2009) for a corresponding
discussion in the context of convex risk measures). In the special case of orthogonal basis functions,
we are able to present a more concrete result:

Corollary 3.1. If {ek, k = 1, . . . ,M} are orthonormal, then Ĉ
(M,N)
τ → Cτ , N → ∞, M → ∞

in L1(Rd,B,PYτ ). In particular, if ρ is a finite convex risk measure on L1(Rd,B,PYτ ), we have

ρ(Ĉ
(M,N)
τ )→ ρ (Cτ ) , N →∞, M →∞.

Thus, at least for certain classes of risk measures ρ, the algorithm produces a consistent estimate,

i.e. if N and M are chosen large enough, ρ(Ĉ
(M,N)
τ ) presents a viable approximation. In the next

part, we make more precise what large enough means and, particularly, how large N needs to be
chosen relative to M.

3.2 Joint Convergence and Convergence Rate

The LSM algorithm approximates the capital level – which is given by the conditional expectation

of the aggregated future cash flows Vτ =
∑T

j=1 xj(Y
(i)
j ) – by its linear projection on the subspace

spanned by the basis functions e(M)(Yτ ) = (e1(Yτ ), . . . , eM (Yτ ))′ :

EP̃ [Vτ |Yτ ] ≈ e(M)(Yτ )′ α̂(N).

Thus, the approximation takes the form of a series estimator for the conditional expectation.
General conditions for the joint convergence of such estimators are provided in Newey (1997).
Convergence of the risk measure then follows as in the previous subsection. We immediately
obtain:7

Proposition 3.2 (Newey (1997)). Assume Var(Vτ |Yτ ) is bounded and that for every M, there is
a non-singular constant matrix B such that for ẽ(M) = B e(M) we have:

7Newey (1997) also provides conditions for uniform convergence and for asymptotic normality of series estimators.
We refer to his paper for details.
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• The smallest eigenvalue of EP [ẽ(M)(Yτ ) ẽ(M)(Yτ )′
]

is bounded away from zero uniformly in
M ; and

• there is a sequence of constants ξ0(M) satisfying supy∈Y ‖ẽ(M)(y)‖ ≤ ξ0(M) and M = M(N)
such that ξ0(M)2M/N → 0 as N →∞, where Y is the support of Yτ .

Moreover, assume there exist ψ > 0 and αM ∈ RM such that supy∈Y |Cτ (y) − e(M)(y)′ αM | =

O(M−ψ) as M →∞.
Then:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N +M−2ψ),

i.e. we have joint convergence in L2(Rd,B,PYτ ).

In this result, we clearly see the influence of the two approximations: The functional approxi-
mation is reflected in the second part of the expression for the convergence rate. Here, it is worth
noting that the speed ψ will depend on the choice of the basis functions, emphasizing the impor-
tance of this aspect. The first part of the expression corresponds to the regression approximation,
and in line with the second part of Proposition 3.1 it goes to zero linearly in N.

The result provides general conditions that can be checked for any selection of basis functions,
although ascertaining them for each underlying stochastic model may be cumbersome. Newey also
provides explicit conditions for the practically relevant case of power series. In our notation, they
read as follows:

Proposition 3.3 (Newey (1997)). Assume Var(Vτ |Yτ ) is bounded and that the basis functions
e(M)(Yτ ) consist of orthonormal polynomials, that Y is a Cartesian product of compact connected
intervals, and that a sub-vector of Yτ has a density that is bounded away from zero. Moreover,
assume that Cτ (y) is continuously differentiable of order s.

Then, if M3/N → 0, we have:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N +M−
2s/d),

i.e. we have joint convergence in L2(Rd,B,PYτ ).

Hence, for orthonormal polynomials, the smoothness of the conditional expectation is important
– which is not surprising given Jackson’s inequality. First-order differentiability is required (s ≥ 1),
and if s = 1, the convergence of the functional approximation will only be of order M−2/d, where d
is the dimension of the underlying model. Clearly, a more customized choice of the basis functions
may improve on this rate.

We note that although M/N enters the convergence rate, the conditions require ξ0(M)2M/N →
0 in general and M3/N → 0 for orthonormal polynomials, effectively to control for the influence
of estimation errors in the empirical covariance matrix of the regressors. Moreover, for common
financial models the assumption of a bounded conditional variance or bounded support of the
stochastic variables are not satisfied. Benedetti (2016) shows that if the distribution of the state
process is known, convergence can still be ensured at a rate of M2 log{M}/N → 0 under more
modest – and in the financial context more appropriate – conditions. We refers to his paper for
details.

Regarding the properties of the estimator beyond convergence, much rides on the first (func-
tional) approximation that we discuss in more detail in the following Section 4. With regards to

the second approximation, it is well-known that as the OLS estimate, Ĉ
(M,N)
τ is unbiased – though
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not necessarily efficient – for Ĉ
(M)
τ under mild conditions (see e.g. Sec. 6 in Amemiya (1985)).

However, this clearly does not imply that ρ(Ĉ
(M,N)
τ ) is unbiased for ρ(Ĉ

(M)
τ ). Proceeding similarly

to Gordy and Juneja (2010) for the nested simulations estimator, in the next subsection we analyze
this relationship in more detail for VaR.

3.3 LSM Estimate for Value-at-Risk

VaR is an important special case, since it is the risk measure applied in regulatory frameworks
such as Basel III and Solvency II. VaR does not fall in the class of convex risk measures so that
Corollary 3.1 does not apply. However, convergence immediately follows from Propositions 3.1-3.3:

Corollary 3.2. We have:

F
Ĉ

(M,N)
τ

(l) = P(Ĉ(M,N)
τ ≤ l)→ P(Cτ ≤ l) = FCτ (l), N →∞, M →∞, l ∈ R,

and:
F−1

Ĉ
(M,N)
τ

(α)→ F−1
Cτ

(α), N →∞, M →∞,

for all continuity points α ∈ (0, 1) of F−1
Cτ

. Moreover, under the conditions of Propositions 3.2 and
3.3, we have joint convergence.

Gordy and Juneja (2010) show that the nested simulations estimator for VaR carries a positive
bias in the order of the number of simulations in the inner step. They derive their results by
considering the joint density of the exact distribution of the capital at time τ and the error when
relying on a finite number of inner simulations scaled by the square-root of the number of inner
simulations. The following proposition establishes that their results carry over to our setting in
view of the second approximation:

Proposition 3.4 (Gordy and Juneja (2010)). Let gN (·, ·) denote the joint probability density func-

tion of (−Ĉ(M)
τ , Z(N)), and assume that it satisfies the regularity conditions from Gordy and Juneja

(2010) collected in the Appendix. Then:

E
[
V̂aRα

[
−Ĉ(M,N)

τ

]]
= VaRα

[
−Ĉ(M)

τ

]
+

θα

Nf̄
(

VaRα

[
−Ĉ(M)

τ

]) + oN (N−1),

where V̂aRα

[
−Ĉ(M,N)

τ

]
denotes the d(1−α)Ne order statistic of Ĉ

(M,N)
τ (Y

(i)
τ ), 1 ≤ i ≤ N (the sam-

ple quantile), θα = −1
2
d
dµ

[
f̄(µ)E

[
σ2
Z(N) | − Ĉ

(M)
τ = µ

]]
µ=VaRα

[
−Ĉ(M)

τ

], σ2
Z(N) = E

[(
Z(N)

)2 |Yτ],
and f̄ is the marginal density of −Ĉ(M)

τ .

The key point of the proposition is that – similarly to the nested simulations estimator – the
LSM estimator for VaR is biased. In particular, for large losses or a large value of α, the derivative
of the density in the tail is negative resulting in a positive bias. That is, ceteris paribus, on average
the LSM estimator will err on the “conservative” side (see also Bauer et al. (2012)). However, note
that this statement of course ignores the variance due to estimating the risk measure from the finite
sample, which may well trump the inaccuracy due to bias – and unlike the nested simulations setting,
here the two sources are governed by the same parameter N. Indeed, as is clear from Proposition
3.1, the convergence of the variance is of order N and thus dominates the mean squared error for
relatively large values of N (the bias will enter as O(N−2)). Moreover, of course the result only
pertains to the regression approximation but not the approximation of the capital variable via the
linear combination of basis functions, which is at the core of the proposed algorithm.
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4 Choice of Basis Functions

As demonstrated in Section 3.1, any set of independent functions will lead the LSM algorithm
to converge. In fact, for the LSM method for pricing non-European derivatives, frequent choices
of basis functions include Hermite polynomials, Legendre polynomials, Chebyshev polynomials,
Fourier series, and even simple polynomials. While the choice is important for the pricing approx-
imation (Glasserman, 2004, Sec. 8.6), several authors conclude based on numerical tests that the
approach appears robust for typical problems when including a sufficiently large number of terms
(see e.g. Moreno and Navas (2003) and also the original paper by Longstaff and Schwartz (2001)).
A key difference between the LSM pricing method and the approach here, however, is that it is
necessary to approximate the distribution over its entire domain rather than the expected value
only. Furthermore, the state space for estimating a company’s capital can be high-dimensional
and considerably more complex than that of a derivative security. Therefore, the choice of basis
functions is not only potentially more complex but also more crucial in the present context.

4.1 Optimal Basis Functions for a Model Framework

As illustrated in Section 2.1, we can identify the capital – as a function of the state vector at the
risk horizon Yτ – for a cash flow model x within a certain model framework Y with the output of
the linear operator L applied to x: Cτ (Yτ ) = Lx(Yτ ) (Eq. (3)). As discussed in Section 3.2, the
LSM algorithm, in turn, approximates Cτ by its linear projection on the subspace spanned by the
basis functions e(M)(Yτ ), P Cτ (Yτ ), where P is the projection operator.

For simplicity, in what follows, we assume that the basis functions are orthonormal in L2(R,B,PYτ ).
Then we can represent P as:

P · =
M∑
k=1

〈·, ek(Yτ )〉L2(PYτ ) ek.

Therefore, the LSM approximation can be represented via the finite rank operator LF = P L, where
we have:

LFx = P Lx =
M∑
k=1

〈Lx, ek(Yτ )〉L2(PYτ ) ek

=
M∑
k=1

EP

[
ek(Yτ )

T∑
j=τ

EP̃ [xj(Yj)|Yτ ]

]
ek =

M∑
k=1

EP

[
ek(Yτ )

T∑
j=τ

xj(Yj)︸ ︷︷ ︸
=Vτ

]
ek

=

M∑
k=1

EP̃ [ek(Yτ )Vτ ]︸ ︷︷ ︸
αk

ek, (7)

where the fourth equality follows by the tower property of conditional expectations.
It is important to note that under this representation, ignoring the uncertainty arising from

the regression estimate, the operator LF gives the LSM approximation for each model x within
the model framework. That is, the choice of the basis function precedes fixing a particular cash
flow model (payoff). Thus, we can define optimal basis functions as a system that minimizes the
distance between L and LF , so that the approximation is optimal with regards to all possible cash
flow models within the framework:
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Definition 4.1. We call the set of basis functions {e∗1, e∗2, ..., e∗M} optimal in L2(Rd,B,PYτ ) if:

{e∗1, e∗2, ..., e∗M} = arginf{e1,e2,...,eM}‖L− LF ‖ = arginf{e1,e2,...,eM} sup
‖x‖=1

‖Lx− LFx‖.

This notion of optimality has various advantages in the context of calculating risk capital.
Unlike pricing a specific derivative security with a well-determined payoff, capital may need to be
calculated for subportfolios or only certain lines of business for the purpose of capital allocation.
Moreover, a company’s portfolio will change from one calculation date to the next, so that the
relevant cash flow model is in flux. The underlying model framework, on the other hand, is usually
common to all subportfolios since the purpose of a capital framework is exactly the enterprise-wide
determination of diversification opportunities and systematic risk factors. Also, it is typically not
frequently revised. Hence, it is expedient here to connect the optimality of basis functions to the
framework rather than a particular model (payoff).

4.2 Optimal Basis Functions for a Compact Valuation Operator

In order to derive optimal basis functions, it is sufficient to determine the finite-rank operator LF
that presents the best approximation to the infinite-dimensional operator L. If L is a compact
operator, this approximation is immediately given by the singular value decomposition (SVD) of L
(for convenience, details on the SVD of a compact operator are collected in the Appendix). More
precisely, we can then represent L : H → L2(Rd,B,PYτ ) as:

Lx =
∞∑
k=1

ωk 〈x, sk〉ϕk, (8)

where {ωk} with ω1 ≥ ω2 ≥ . . . are the singular values of L, {sk} are the right singular functions of
L, and {ϕk} are the left singular functions of L – which are exactly the eigenfunctions of LL∗. The
following proposition demonstrates that the optimal basis functions are given by the left singular
functions of L.

Proposition 4.1. Assume the operator L is compact. Then for each M, the left singular functions
of L {ϕ1, ϕ2, . . . , ϕM} ∈ L2(Rd,B,PYτ ) are optimal basis functions in the sense of Definition 4.1.
For a fixed cash flow model, we obtain αk = ωk 〈x, sk〉.

The result that the left singular functions provide an optimal approximation may not be sur-
prising given related results in finite dimensions. In particular, our proof is similar to the Eckart-
Young-Mirsky Theorem on low-rank approximations of an arbitrary matrix. A sufficient condition
for the compactness of the operator L is provided in Lemma 2.3.

To appraise the impact of the two approximations simultaneously, we can analyze the joint con-
vergence properties in M and N for the case of optimal basis functions. Here, in general, we have to
check the conditions from Newey’s convergence result (Prop. 3.2). We observe that the convergence
rate associated with the first (functional) approximation depends on the parameter ψ, which in the
present context derives from the speed of convergence of the singular value decomposition:

O(M−ψ) = inf
αM

sup
y∈Y
|Cτ (y)− e(M)(y)′ αM | ≤ sup

y∈Y
|Lx (y)− LF x (y)|

= sup
y∈Y

∣∣∣∣∣
∞∑

k=M+1

ωk 〈x, sk〉ϕk(y)

∣∣∣∣∣ . (9)

In particular, we are able to provide an explicit result in the case of bounded singular functions.
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Proposition 4.2. Assume Var(Vτ |Yτ ) is bounded and that the singular functions, {ϕk}∞k=1, are
uniformly bounded on the support of Yτ . Then, if M2/N → 0, we have:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N + ω2
M ),

i.e. we have joint convergence in L2(Rd,B,PYτ ).

Comparing this convergence rate for singular functions to the general case from Proposition
3.2 and the orthonormal polynomial case from Proposition 3.3, we notice that the second term
associated with the first (functional) approximation now is directly linked to the decay of the
singular values. For integral operators, this rate depends on the smoothness of the kernel k(x, y)
(see Birman and Solomyak (1977) for a survey on the convergence of singular values of integral
operators). In any case, Equation (9) that directly enters Newey’s convergence result illustrates the
intuition behind the optimality criterion: To choose a basis function that minimizes the distance
between the operators for all x, although in the Definition we consider the L2-norm rather than
the supremum.

The derivation of the SVD of the valuation operator of course depends on the specific model
framework. In some cases, it is possible to carry out the calculations and derive analytical expres-
sions for the singular values. In the next subsection, we determine the SVD – and, thus, optimal
basis functions – in the practically highly relevant case of Gaussian transition densities. Here, the
optimal basis functions correspond to Hermite polynomials of suitably transformed state variables
and the singular values decay exponentially for d = 1 (Proposition 4.3), demonstrating the merits
of this choice.

4.3 Optimal Basis Functions for Gaussian Transition Densities

In what follows, we consider a single cash flow at time T only (generalizations follow analogously),
and we assume that (Yt) is an Rd-dimensional Markov process such that (Yτ , YT ) are jointly Gaus-
sian distributed. We denote the P̃-distribution of this random vector via:(

Yτ
YT

)
∼ N

[(
µτ
µT

)
,

(
Στ Γ
Γ′ ΣT

)]
, (10)

where µτ , µT , Στ , and ΣT are the mean vectors and variance-covariance matrices of Yτ and YT ,
respectively, and Γ is the corresponding (auto) covariance matrix – which we assume to be non-
singular.8

Denoting by g(x;µ,Σ) the normal probability density function at x with mean vector µ and
covariance matrix Σ, the marginal densities of Yτ and YT are πYτ (x) = g(x;µτ ,Στ ) and πYT (y) =
g(y;µT ,ΣT ), respectively. Mapping these assumption to the previous notation yields x = xT ,
L : H = L2(Rd,B, πYT )→ L2(Rd,B, πYτ ), and:

Cτ (Yτ ) = Lx(Yτ ) =

∫
Rd
xT (y)πYT |Yτ (y|Yτ ) dy,

where πYT |Yτ (y|x) denotes the transition density. In order to obtain optimal basis functions, the
objective is to derive the SVD of L.

8The distribution in (10) is the unconditional distribution with known Y0.
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Lemma 4.1. We have for the conditional distributions:

YT |Yτ ∼ N
(
µT |τ (x),ΣT |τ

)
and Yτ |YT ∼ N

(
µτ |T (y),Στ |T

)
with transition density and reverse transition density:

πYT |Yτ (y|x) = g(y;µT |τ (x),ΣT |τ ) and πYτ |YT (x|y) = g(x;µτ |T (y),Στ |T ),

respectively, where µT |τ (x) = µT+Γ′Σ−1
τ (x−µτ ), ΣT |τ = ΣT−Γ′Σ−1

τ Γ, µτ |T (y) = µτ+ΓΣ−1
T (y−µT ),

and Στ |T = Στ − ΓΣ−1
T Γ′. Moreover, L is compact in this setting.

Per Proposition 4.1, the optimal basis functions are given by the left singular functions, which
are in turn the eigenfunctions of LL∗. We obtain:

Lemma 4.2. The operator LL∗ and L∗L are integral operators:

LL∗f(·) =

∫
Rd
KA(·, y) f(y) dy and L∗Lf(·) =

∫
Rd
KB(·, x) f(x) dx,

where the kernels are given by Gaussian densities:

KA(x, y) = g(y;µA(x),ΣA) and KB(y, x) = g(x;µB(y),ΣB)

with

• µA(x) = µτ +A(x− µτ ), A = ΓΣ−1
T Γ′Σ−1

τ , and ΣA = Στ −AΣτA
′;

• µB(y) = µT +B(y − µT ), B = Γ′Σ−1
τ ΓΣ−1

T , and ΣB = ΣT −BΣTB
′.

We denote by EKA [·|x] and EKB [·|y] the expectation operators under the Gaussian densities KA(x, ·)
and KB(y, ·), respectively.

The problem of finding the singular values and the left singular functions therefore amounts to
solving the eigen-equations:

EKA [f(Y )|x] = ω2 f(x).

We exploit analogies to the eigenvalue problem of the Markov operator of a first-order multivariate
normal autoregressive (MAR(1)) process studied in Khare and Zhou (2009) to obtain the following:

Lemma 4.3. Denote by PΛP ′ the eigenvalue decomposition of:

Σ−1/2
τ AΣ1/2

τ = Σ−1/2
τ ΓΣ−1

T Γ′Σ−1/2
τ ,

where PP ′ = I and Λ is the diagonal matrix whose entries are the eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥
|λd| of A. For y ∈ Rd, define the transformation:

zP (y) = P ′Σ−1/2
τ (y − µτ ). (11)

Then for Y ∼ KA(x, ·), we have:

EKA
[
zP (Y )|x

]
= Λ zP (x).

Moreover, VarKA
[
zP (Y )|x

]
= I − Λ2, EπYτ

[
zP (Yτ )

]
= 0, and VarπYτ

[
zP (Yτ )

]
= I.

Similarly, denote the diagonalization Σ
−1/2
T BΣ

1/2
T = QΛQ′, where Q′Q = I and define the

transformation:

zQ(x) = Q′Σ
−1/2
T (x− µT ). (12)

Then for X ∼ KB(y, ·), we have:

EKB
[
zQ(X)|y

]
= Λ zQ(y),

VarKB
[
zQ(X)|y

]
= I − Λ2, EπYT

[
zQ(YT )

]
= 0, and VarπYT

[
zQ(YT )

]
= I.
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Therefore, for a random vector Y |x in Rd that is distributed according to KA(x, ·), the com-
ponents zPi (Y ) of zP (Y ) are independently distributed with zPi (Y ) ∼ N(λi z

P
i (x), 1 − λ2

i ), where
zPi (x) is the i-th component of zP (x). Since eigenfunctions of standard Gaussian distributed random
variables are given by Hermite polynomials, the SVD follows immediately from Lemma 4.3:

Proposition 4.3. Denote the Hermite polynomial of degree j by hj(x), that is:9

h0(x) = 1, h1(x) = x, hj(x) =
1√
j

(
xhj−1(x)−

√
j − 1hj−2(x)

)
, j = 2, 3, ...

The singular values of L in the current (Gaussian) setting are given by:

ωm = Πd
i=1λ

ki/2
i , m = (k1, ..., kd) ∈ Nd0, (13)

where Nd0 is the set of d-dimensional non-negative integers, and the corresponding right and left
singular functions are:

sm(x) = Πd
i=1hki(z

Q
i (x)) and ϕm(y) = Πd

i=1hki(z
P
i (y)),

respectively.

Combining the insights from Proposition 4.1 and Proposition 4.3, we immediately obtain:

Corollary 4.1. Let (mk)k∈N be a reordering of {m} = {(k1, ..., kd) ∈ Nd0} such that:

ωm1 ≥ ωm2 ≥ ωm3 ≥ . . .

Then, in the current setting, optimal choices for the basis functions for the LSM algorithm in the
sense of Definition 4.1 are given by:

ϕk = ϕmk , k = 1, 2, 3, . . .

In the univariate case (d = 1), A = λ1 is the square of the correlation coefficient between Yτ
and YT – so that the singular values are simply powers of this correlation, decaying exponentially.
Thus, the SVD takes the form:

Lx(Yτ ) =
∞∑
k=1

(Corr(Yτ , YT ))k−1

〈
xT , hk−1

(
YT − µT

ΣT

)〉
πYT

hk−1

(
Yτ − µτ

Στ

)
.

In particular, optimal basis functions are given by Hermite polynomials of the normalized Markov
state – although other choices of polynomial bases will generate the same span so that the results
will coincide.

In the general multivariate case, it is clear from Proposition 4.3 that the singular values of L
are directly related to eigenvalues of the matrix A (or, equivalently, B), and there are d vectors
of indices m such that

∑
i ki = 1, d2 vectors of indices such that

∑
i ki = 2, etc. in Equation

(13). The order of these singular values will determine the order of the singular functions in
the SVD (8). In particular, after ϕ1(x) = 1 with coefficient equaling 〈xT , 1〉 = E[xT ], the first
nontrivial basis function is given by the singular function associated with the largest singular value
– which according to (11) is a component of the linearly transformed normalized state vector. The

9See Kollo and Rosen (2006) for real- and vector-valued Hermite polynomials and the normalization employed
here.
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subsequent basis functions depend on the relative magnitudes of the different singular values. For
instance, while for 1 > λ1 > λ2 clearly

√
λ1 >

√
λ1

2
= λ1 and similarly for λ2, it is not clear whether

λ1 >
√
λ2 or vice versa – and this order will determine which combination of basis functions is

optimal.
Thus, in the multi-dimensional case – and particularly in high-dimensional settings that are

relevant for practical applications – is where the analysis here provides immediate guidance. Even
if a user chooses the same function class (Hermite polynomials) or function classes with the same
span (e.g., other polynomial families), it is unlikely that a näıve choice will pick the suitable
combinations – and this choice becomes less trivial and more material as the number of dimensions
increases.

From Proposition 3.1, we obtain sequential convergence. Joint convergence for (a class of) mod-
els x can be established by following Newey’s approach from Propositions 3.2/3.3, or by relying on
the results from Benedetti (2016) in case the parameters are known. While the Hermite polynomials
do not satisfy the uniformly boundedness assumptions from Proposition 4.2, from Proposition 3.2
and the discussion following Proposition 4.2, it is clear that the convergence rate of the functional
approximation is linked to the decay of the singular values (O(ω2

M ) in Prop. 4.2). In the current
setting we have (Prop. 4.3):

ω2
M = ω2

mM
=

d∏
i=1

λkii ≤
d∏
i=1

max
1≤i≤d

{λi}ki = max
1≤i≤d

{λi}
∑
i ki ,

where max1≤i≤d{λi} < 1 and there are d vectors m such that
∑

i ki = 1, d2 vectors m such that∑
i ki = 2, etc. Thus, as in Proposition 3.3, the convergence is slowing down as the dimension d of

the state process increases, although the relationship here is exponential rather than polynomial.
In models with non-Gaussian transitions, while an analytical derivation may not be possible,

we can rely on numerical methods to determine approximations of the optimal basis functions.
For instance, Huang (2012) explains how to solve the associated integral equation by discretization
methods, which allows to determine the singular functions numerically. Alternatively, Serdyukov
et al. (2014) apply the truncated SVD to solve inverse problems numerically.

5 Applications

To illustrate the LSM algorithm and its properties, we consider two examples from life insurance:
A Guaranteed Annuity Option (GAO) within a conventional pure endowment policy and a Guar-
anteed Minimum Income Benefit (GMIB) within a Variable Annuity contract. As indicated in
the Introduction, the LSM algorithm is particularly relevant in insurance, especially in light of
the new Solvency II regulation that came into effect in 2016. Here, the so-called Solvency Capital
Requirement takes the form of a 99.5% VaR at the risk horizon τ = 1.

5.1 Application to GAO

GAOs are common in many markets and, as described in Boyle and Hardy (2003), these options
were a major factor in the demise of Equitable Life, the world’s oldest life insurance company, in
2000. We consider the valuation of a GAO attached to a basic pure endowment policy under the
Vasicek (1977) interest rate model. This framework has two advantages. First, following Boyle and
Hardy (2003) and Pelsser (2003), it is possible to derive a closed form valuation formula. Hence,
we can exactly simulate the capital level at the risk horizon and derive a closed form for the VaR.
This allows us to appraise the performance of the LSM algorithm by comparing numerical results
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to the “exact” quantities that are not subject to the functional approximation. Moreover, since
the Vasicek model is driven by a simple Ornstein-Uhlenbeck (OU) process, it falls in the class of
models considered in Section 4.3 and we can rely on the corresponding results to obtain optimal
basis functions.

5.1.1 Payoff of the GAO and Valuation Formula

We consider a large portfolio of pure endowment policies with a GAO. In particular, we abstract
from mortality risk (aggregate systematic risk as well as small sample risk), and to ease notation
we derive all expressions for a single policyholder aged x at time zero. Following standard actuarial
notation we denote the k-year survival probability by kpx.

Under a plain pure endowment policy, a policyholder receives a fixed payment P upon survival
until the maturity date T and nothing in case death occurs before time T. Thus, the time-t value
of the basic contract – if the policyholder is alive – is P p(t, T ) T−tpx+t, where p(t, T ) is the value at
time t of a zero-coupon bond with maturity T. The benefit can be taken out as a fixed payment or
can be converted into a life annuity under the concurrent market annuity payout rate, mx+T (T ).
In the latter case, policyholders will receive a payment of P mx+T (T ) each year upon survival.

When the policy is equipped with a GAO, upon survival until T, the policyholder has the right
to choose between (i) a fixed payment of P, (ii) a life annuity at the market rate P mx+T (T ), or
(iii) a life annuity with a guaranteed payout rate g fixed at the policy’s inception. Clearly, (i) and
(ii) will result in the same (market) value, so that the time T payoff for the pure endowment plus
GAO is given by the maximum of options (ii) and (iii):10

P max{g,mx+T (T )}
∞∑
k=1

kpx+T p(T, T + k)︸ ︷︷ ︸
=ax+T (T )

,

where ax+T (T ) denotes the time T -value of an immediate annuity on an (x + T )-year old policy-
holder. We clearly have mx+T (T ) = 1/ax+T (T ), so that:

P max{g,mx+T (T )} ax+T (T ) = P + P max{g ax+T (T )− 1, 0}︸ ︷︷ ︸
=C(T )

.

Here, the bond prices within the annuity present value depend on the concurrent (time T )
interest rate rT , so that C(T ) takes the form of an interest rate derivative. For its valuation,
we follow Vasicek (1977) and assume the interest rate evolves according to a unidimensional OU
process:

drt = α(γ − rt) dt+ σ dWt, (14)

under the physical measure P, whereas the dynamics under the risk-neutral measure Q are given
by:

drt = α(γ̄ − rt) dt+ σ dZt. (15)

Here α is the speed of mean reversion, γ is the mean reversion level, σ is the volatility, γ̄ = γ−λσ/α
where λ is the market price of risk, and (Wt) and (Zt) are standard Brownian motions under the
physical measure and risk-neutral measure, respectively. Following Boyle and Hardy (2003), who

10Clearly, this entails the strong assumption on the policyholder’s behavior to choose the value-maximizing option.
While this may not be the case in a realistic setting with financial frictions, incomplete markets, or behavioral biases,
we accept it here for illustrative purposes.
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rely on the approach by Jamshidian (1989) for pricing options on a coupon bond, we obtain for the
value of the GAO:

c(t) = EQ
[
T−tpx+t e

−
∫ T
t rs dsC(T ) |rt

]
(16)

= g T−tpx+t

∞∑
k=1

kpx+T [p(t, T ) Φ(h)−Kk p(t, T + k) Φ(h− σ̃)] . (17)

Here Φ(·) denotes the standard Normal cumulative distribution function,

σ̃ = σ

√
1− e−2α(T−t)

2α

1− exp(−αk)

α
, h =

1

σ̃
log

(
p(t, T + k)

p(t, T )Kk

)
+
σ̃

2
,

and the strike price Kk is given by p∗(T, T + k), where r∗T is the interest rate such that:

∞∑
k=1

kpx+T p
∗(T, T + k) = 1/g,

and p∗(T, T + k) is the price of a zero coupon bond priced at rate r∗T . Thus, the price of the pure
endowment plus GAO policy is:

v(t) = P (c(t) + p(t, T ) T−tpx+t) . (18)

5.1.2 Capital Requirement for the GAO

The (available) capital at the risk horizon τ is given by the present value of assets Aτ minus
liabilities Lτ . For the single pure endowment plus GAO policy considered here, we obtain:

Cτ = Aτ − Lτ = Aτ − P (T−τpx+τ p(τ, T ) + c(τ))︸ ︷︷ ︸
=v(τ)

= Aτ − P T−τpx+τ p(τ, T )EQT [1 + C(T )|rτ ] , (19)

where QT denotes the T -forward measure, i.e. the risk-neutral measure when choosing (p(t, T )) as
the numéraire process. For the dynamics of the risk-free rate, we have:

drt = α(γ̄ − σ2
/α2 (1− e−α(T−t))− rt) dt+ σ dZTt ,

where
(
ZTt
)

is a Brownian motion under QT . The capital requirement can then be determined by
a risk measure ρ applied to −Cτ : ρ(−Cτ ) (see e.g. Eq. (1) in the case of VaR).

For simplicity, we ignore asset risk in what follows and set Aτ = 0, so that we can express
the capital requirement as ρ (v(τ)) . Since the distribution of the risk-free rate under the physical
measure is Normal, rτ ∼ N(µτ , σ

2
τ ) (see Lemma 5.1 below), and since v(t) is decreasing in rt, we

can determine the capital in closed form for various risk measures. For instance, in the case of VaR,
we obtain:

VaRα = v(τ, rτ = µτ − Φ−1(α)στ ). (20)

For calculating the capital requirement via the LSM algorithm, we map the notation from the
previous sections to the current setting. From Equation (19), it is clear that the relevant state
process Yt = rt is of dimension d = 1. Moreover, the cash flow functional x = xT , where:

xT (rT ) = −v(T, rT ) = −P T−τpx+τ p(τ, T ) [1 + C(T, rT )]
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and
Cτ = Lx (rτ ) = EQT [xT (rT )|rτ ] .

To apply Proposition 4.3 to the current problem, we require the joint distribution of the state
variables rτ and rT :

Lemma 5.1. The joint distribution of rτ and rT under P̃ is:[
rτ
rT

]
∼ N

([
µτ
µT

]
,

[
σ2
τ , e−α(T−τ)σ2

τ

e−α(T−τ)σ2
τ , σ2

T

])
,

where we refer to the proof in the Appendix for explicit expressions of µτ , στ , etc. in terms of the
parameters.

From Proposition 4.3, we then have:

Lx(rτ ) =

∞∑
k=1

ρk−1 〈x, hk−1〉hk−1(z(rτ )),

where ρ = e−α(T−τ)στ/σT and z(rτ ) = (rτ − µτ )/στ . Importantly, since the first n Hermite
polynomials are spanned by other families of orthogonal polynomials and even simple monomials,
other polynomial families will lead to equivalent results (ignoring possible numerical issues in the
calculation of the regression coefficients). However, we can compare this family to other basis
functions with a different functional form; following Proposition 3.1, we will have (sequential)
convergence for any (square-integrable) choice of basis functions.

5.1.3 Numerical Results

We parametrize the model by using representative values. We set the initial interest rate r0 = 5%,
and for the interest rate parameters we assume α = 15% (speed of mean reversion), γ = 5% (mean
reversion level), σ = 1% (interest rate volatility), λ = 3% (market price of risk), and x = 55 (age
of the policyholder). For the mortality rates, for illustrative purposes, we use a simple De Moivre
model with terminal age ω = 110, so that kpx = ω−x−k/ω−x. For the insurance contract, we let
the face value P = 100, the maturity T = 10, and the guaranteed annuity rate g = 1/9. This
rate corresponds to a (flat) interest rate of a little over 6%, so that the option will frequently be
in-the-money. Finally, we set the risk horizon τ = 1 as it is typical in insurance.

We start by analyzing the LSM approximation to the capital variable as we vary the number of
basis functions. In Figure 1, we display the empirical density functions based on N = 60, 000 Monte
Carlo simulations for exact realizations according to Equation (17) and approximate realizations
calculated via the LSM algorithm for different numbers of basis functions M. Here we rely on
the optimal basis functions from Proposition 4.3 (Hermite polynomials). As is evident from the
figure, the approximation becomes closer as M increases, although already for low values of M the
LSM algorithm seems to capture the basic shape of the density. Hence, this first analysis seems
encouraging that the LSM algorithm can provide viable results.

To appraise the influence of the choice of basis functions, in Figure 2 we compare the LSM
approximation based on the singular functions as used in Figure 1 to a different choice of basis
functions, namely the first M elements of the Fourier basis. We observe that the approximation
based on the (non-optimal) Fourier series is noticeably worse. In particular, from panel (2a) with
M = 4, we find that the Fourier basis is not able to accurately reflect the shape of the density
function. As the number of basis functions increases, of course the approximation becomes better
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Estimated Density under Different Number of Basis Functions, N=60,000
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Figure 1: Empirical density functions of v(τ) based on N = 60, 000 Monte Carlo realizations; exact
and using the LSM algorithm with M singular functions in the approximation.

as is evident from panel (2b) with M = 10. However, still the optimal basis functions provide a
considerably better fit.

Table 1 reinforces this insight. Here, we show statistical differences between the empirical
density functions based on N = 700, 000 realizations (we report the mean of two-hundred runs)
using, on the one hand, the exact realizations of the capital and, on the other hand, an LSM
approximation. We compare differences for various choices of basis functions, both in view of the
number of function terms M and the function class (singular functions / polynomials vs. Fourier
basis). For each combination, the table reports three common statistical distance measures: the
Kolmogorov-Smirnov statistic (KS), the Kullback-Leibler divergence (KL), and the Jensen-Shannon
divergence (JS). There are two key observations. First, the statistical distances are considerably
smaller for the optimal choice of singular functions relative to the Fourier series. This holds for
all combinations and distance measures, and, depending on the metric, the discrepancy is quite
large. Second, the statistical difference increases for the singular functions as we add additional
basis functions, i.e. as M increases. The reason becomes clear when recalling our results on joint
convergence: When increasing M, the error due to the regression approximation increases (the
second approximation from Section 2.2 corresponding to the first term in the convergence order
from Proposition 3.2). For the Fourier basis, on the other hand, adding a basis term decreases the
distance. Generally, both aspects in the convergence rate are at work – as M increases and with
fixed N, the regression approximation worsens but the functional approximation improves – with
either of them dominating in some cases.

The key application for the LSM algorithm in practice is calculating a company’s capital re-
quirement (economic capital), which is cast via a risk measure applied to the simulated distribution.
Figure 3 shows results for the third quartile (VaR75%) and the 99.5% VaR (VaR99.5%). In both
cases, we show results for different numbers of simulations N used in the LSM algorithm on the
x-axis. We use the first M = 3 (fixed) singular functions as basis functions. For each combination
of risk measure and N, we run the LSM algorithm 300 times and determine the risk measure for
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Estimated Density via Two Different Basis Functions
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(a) M = 4, N = 60, 000
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Figure 2: Empirical density functions of v(τ) based on N Monte Carlo realizations; exact and using
the LSM algorithm with different basis functions (M terms)

Order Singular Functions Fourier Series

M = 3
KS 2.218× 10−3 6.601× 10−2

KL 1.413× 10−8 5.226× 10−5

JS 5.465× 10−5 3.594× 10−3

M = 4
KS 2.291× 10−3 6.570× 10−2

KL 1.896× 10−8 9.582× 10−6

JS 6.555× 10−5 1.507× 10−3

M = 5
KS 2.423× 10−3 6.208× 10−2

KL 2.421× 10−8 9.324× 10−6

JS 7.435× 10−5 1.483× 10−3

Table 1: Statistical distances between the empirical density function based on the exact realizations
and the LSM approximation using different basis functions; mean of two-hundred realizations of
N = 700, 000.

each run. Figure 3 provides box plots of the outcomes (the box presents the area between the first
and third quartile, with the inner line placed at the median; the whisker line spans samples that are
located closer than 150% of the interquartile range to the upper and lower quartiles, respectively
(Tukey boxplot)).

The VaR formula from Equation (20) yields 74.65 and 83.14 for the third quartile and the 99.5%
VaR, respectively. From Figure 3, it appears that the LSM algorithm produces viable results even
with a relatively small number of simulations, e.g. ranging between about 74.5 to 74.9 for VaR75%

when using 20,000 simulations. However, this range becomes wider as we move towards the tail
of the distribution, with the corresponding estimates for VaR99.5% ranging between roughly 82.5
to 84. We observe a slight downward trend in the mean of the VaR99.5% when increasing N in
line with the positive bias from Proposition 3.4. However, as also indicated in the discussion after
the proposition, the bias is overshadowed by the sample variance resulting from the Monte Carlo
estimation of the quantiles.

Increasing the number of simulations of course yields a more accurate estimation of the quantiles.
In Figure 4a, we plot the distributions of 99.5% VaR for N = 700, 000 and different choices for the
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Figure 3: Box-and-whisker diagrams for different risk measures (mean, third quartile, and 99.5%
VaR) calculated using the LSM algorithm with different number of simulations N ; the number of
basis functions is fixed at M = 3.

number of basis functions M (again box plots based on 300 runs). We find that the dispersion of the
distribution becomes larger as the number of basis functions increases under the fixed number of
simulations. Again, this emphasizes the importance of the joint convergence rate: When increasing
M, to ascertain the approximation improves, it is necessary to simultaneously increase N.

The results are sensitive to changes in the parameters. For instance, in Figure 4b, we increase
the volatility parameter (σ) from 1% to 2.5%. The VaR formula from Equation (20) yields 124.18
and we find that the range for VaR99.5% at σ = 2.5% widens substantially relative to Figure 3.
Thus, the required computational budget to obtain viable results may increase as the parameters
change. Moreover, the positive bias arising from the VaR estimation is more evident in this case.

5.2 Application to GMIB

Within a Variable Annuity (VA) plus GMIB, at maturity T the policyholder has the right to
choose between a lump sum payment amounting to the current account value or a guaranteed
annuity payment b determined as a guaranteed rate applied to a guaranteed amount. GMIBs are
popular riders for VA contracts: Between 2011 and 2013, roughly 15% of the more than $150 billion
worth of Variable Annuities sold in the US contained a GMIB.11 Importantly, GMIBs are subject
to a variety of risk factors, including fund (investment) risk, mortality risk, and – as long term
contracts – interest rate risk. Consequently, we consider its risk and valuation in a multivariate
Markov setting for these three risk factors.

5.2.1 Model and Payoff of the GMIB

As in the previous section, we consider a large portfolio of GMIBs with policyholder age x, policy
maturity T, and a fixed guaranteed amount – so that the guaranteed annuity payment b is fixed at
time zero.12 The payoff of the VA plus GMIB at T in case of survival is given by:

max {ST , b ax+T (T )} , (21)

11Source: Fact Sheets by the Life Insurance and Market Research Association (LIMRA).
12Some contract variants include path-dependent features such as ratchet guarantees.
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Figure 4: Box-and-whisker diagrams for 99.5% VaR calculated using the LSM algorithm with
different number of basis functions and N fixed (a); and different number of simulations N and M
fixed under an increased volatility parameter (b).

where ST is the underlying account value which evolves according to a reference asset net various
fees (which we ignore for simplicity).

We consider a three-dimensional state process Yt governing financial and biometric risks:

Yt = (qt, rt, µx+t)
′,

where qt denotes the log-price of the risky asset at time t, rt is the short rate, and µx+t is the force
of mortality of an (x + t)-aged person at time t. We assume Yt satisfies the following stochastic
differential equations under P:

dqt =

(
m− 1

2
σ2
S

)
dt+ σS dW

S
t , (22)

drt = α(γ − rt) dt+ σr dW
r
t , (23)

dµx+t = κµx+t dt+ ψ dWµ
t , (24)

where m is the instantaneous rate of return of the risky asset, σS is the asset volatility, κ is an
instantaneous rate of increment of mortality (Gompertz exponent), ψ is the volatility of morta-
lity, and WS

t , W r
t , and Wµ

t are standard Brownian motions under P with dWS
t dW

r
t = ρ12 dt,

dWS
t dW

µ
t = ρ13dt, and dW r

t dW
µ
t = ρ23dt. Note that the solutions to the above stochastic differ-

ential equations at time t are Normal distributed so that we can derive the optimal basis function
using the approach in Section 4.3.

The dynamics of Yt under the risk-neutral measure Q are given by:

dqt =

(
rt −

1

2
σ2
S

)
dt+ σS dW̃

S
t ,

drt = α(γ̄ − rt) dt+ σr dW̃
r
t ,

dµx+t = κµx+t dt+ ψ dW̃µ
t ,

where W̃S
t , W̃ r

t , and W̃µ
t are standard Brownian motions under Q with the same correlation coeffi-

cients. Here, for simplicity and without loss of generality, we assume that there is no risk premium
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for mortality risk. Since the force of mortality is stochastic, the k-year survival probability kpx+t

is given by:

kpx+t = EQ
[
e−

∫ t+k
t µx+s ds|Yt

]
,

and the time-t value of the VA plus GMIB contract is:

V (t) = EQ
[
e−

∫ T
t rs+µx+s ds max {eqT , b ax+T (T )} |Yt

]
. (25)

Since it is not possible to obtain an analytical expression for the GMIB, particularly when
considering additional features such as step ups or ratchets, it is necessary to rely on numerical
methods for valuation and estimating risk capital. To directly apply our LSM framework, we adjust
the presentation by changing the numéraire to a pure endowment with maturity T and maturity
value one. The price of the VA plus GMIB at time t is then:

V (t) = T−tEx+t EQE [max {eqT , b ax+T (T )} |Yt] , (26)

where τ ≤ t ≤ T, T−tEx+t is the price of the pure endowment contract at time t, and QE is the
risk-neutral measure using the pure endowment contract as the numéraire.

Under our assumption, we obtain:

T−tEx+t = EQ
[
e−

∫ T
t rs+µx+s ds|Yt

]
= A(t, T ) exp [−Br(t, T )rt −Bµ(t, T )µx+t]

since (rt) and (µt) are affine with

Br(t, T ) =
1− e−α(T−t)

α
, Bµ(t, T ) =

eκ(T−t) − 1

κ
,

A(t, T ) = exp

[
γ̄ (Br(t, T )− T + t) +

1

2

{
σ2
r

α2

(
T − t− 2Br(t, T ) +

1− e−2α(T−t)

2α

)
+
ψ2

κ2

(
T − t− 2Bµ(t, T ) +

e2κ(T−t) − 1

2κ

)
+

2ρ23σrψ

ακ

(
Bµ(t, T )− T + t+Br(t, T )− 1− e−(α−κ)(T−t)

α− κ

)}]
.

Thus, applying Itô’s formula, the dynamics of the pure endowment price are:

dT−tEx+t = T−tEx+t

[
(rt + µx+t)dt− σrBr(t, T )dW̃ r

t − ψBµ(t, T )dW̃µ
t

]
,

and from Brigo and Mercurio (2006), the new dynamics of Yt under QE for τ ≤ t ≤ T become:

dqt =

(
rt −

1

2
σ2
S − ρ12σSσrBr(t, T )− ρ13σSψBµ(t, T )

)
dt+ σSdZ

S
t , (27)

drt =
(
α(γ̄ − rt)− σ2

rBr(t, T )− ρ23σrψBµ(t, T )
)
dt+ σrdZ

r
t , (28)

dµx+t =
(
κµx+t − ρ23σrψBr(t, T )− ψ2Bµ(t, T )

)
dt+ ψ dZµt , (29)

where ZSt , Zrt , and Zµt are standard Brownian motions under QE with dZSt dZ
r
t = ρ12dt, dZ

S
t dZ

µ
t =

ρ13dt, and dZrt dZ
µ
t = ρ23dt.
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Again proceeding similarly to the previous section, we ignore unsystematic mortality risk and
the asset side in the calculation of the risk capital for the VA plus GMIB contract, and estimate
the risk measure ρ(V (τ, Yτ )) via the LSM algorithm. In particular, the cash flow functional in the
current setting is x = xT with:

xT (YT ) = −V (T ) = −max{eqT , bax+T (T )}

and
Cτ = Lx(Yτ ) = T−τEx+τ EQE [xT (YT )|Yτ ] .

To apply our results on optimal basis functions, we require the joint distribution of Yτ and YT :

Lemma 5.2. From (22)−(24) and (27)−(29), the joint (unconditional) distribution of Yτ and YT
under P̃ is: (

Yτ
YT

)
∼ N

[(
µτ
µT

)
,

(
Στ Γ
Γ′ ΣT

)]
,

where we refer to the proof in the Appendix for explicit expressions of µτ , µT , Στ etc. in terms of
the parameters.

Thus we can apply the results from Proposition 4.3 to derive optimal basis functions. More
precisely, for any non negative integer vector l = (l1, l2, l3), ω|l| = λl11 λ

l2
2 λ

l3
3 is a squared singular

value of L, and the corresponding left singular functions is:

ϕl(x) = hl1(zP1 (x))hl2(zP2 (x))hl3(zP3 (x)).

Thus, in order to find the set of optimal basis functions for the LSM algorithm consisting of M
functions, we need to calculate ω|m| for m = (m1,m2,m3) such that |m| ≤ M , order them, and
then determine the associated functions.

5.2.2 Numerical Results

As in the previous application, we set the model parameters using representative values. The initial
price of the risky asset is one hundred – so q0 = 4.605 – and for the risky asset parameters we
assume m = 5% (instantaneous rate of return) and σS = 18% (asset volatility). The initial interest
rate is assumed to be r0 = 2.5%, α = 25% (speed of mean reversion), γ = 2% (mean reversion level),
σr = 1% (interest rate volatility), and λ = 2% (market price of risk). For the mortality rate, we
set x = 55 (age of the policyholder), µ55 = 1% (initial value of mortality), κ = 7% (instantaneous
rate of increment), and ψ = 0.12% (mortality volatility). For correlations, we assume ρ12 = −30%
(correlation between asset and interest rate), ρ13 = 6% (correlation between asset and mortality
rate), and ρ23 = −4% (correlation between interest rate and mortality rate). For the insurance
contract, we let the maturity T = 15, and the guaranteed annuity payout b = 10.83 per year.13 We
set the risk horizon τ = 1 as in the previous application.

With the above parameters, the eigenvalues of A are λ1 = 0.14898, λ2 = 0.06712, and λ3 =
0.00035. The first singular value is one and its corresponding left singular function is ϕ1(x) = 1.
The second singular value of the valuation operator is

√
λ1 and the corresponding left singular

function is ϕ2(x) = zP1 (x). The next three singular values are given by
√
λ2, λ1, and

√
λ1λ2,

and corresponding left singular functions are ϕ3(x) = zP2 (x), ϕ4(x) = 1√
2

((
zP1 (x)

)2 − 1
)
, and

13Here, b is determined by: b = S0× (1+mg)
T

/a∗
x+T

= S0× (1+mg)
T (TEx)/(

∑∞
k=1 T+kEx), where mg is the guaranteed

rate of return and a∗x+T is actuarial present value based on forward rates. We set mg = 2%. With above parameter
values, the probability that ST > bax+T (T ) is approximately 40%.
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ϕ5(x) = zP1 (x)zP2 (x). In contrast, a näıve choice of five monomials may result in the sequence
(1, qτ , rτ , µx+τ , q

2
τ ) or another arbitrary arrangement.

We implement the LSM approximation to the capital variable and vary the number of basis
functions. In Figure 5, we provide empirical densities based on N = 3, 000, 000 and approximate
realizations calculated via the LSM algorithm for different numbers of basis functions M. Here we
rely on the optimal basis functions from Proposition 4.3 (Hermite polynomials). As is evident from
the figure, the required number of basis function is relatively large compared to the univariate case
from the previous section.14 The approximation becomes closer to the exact density as M increases.

Estimated Density under Different Number of Basis Functions, N=3,000,000
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Figure 5: Empirical densities of V (τ) based on N = 3, 000, 000 Monte Carlo realizations; exact and
using the LSM algorithm with M singular functions in the approximation.

To assess the performance of optimal basis functions relative to näıve choices, in Table 2 we
report statistical differences to the exact distribution according to various statistical distance mea-
sures for singular functions (left column) and simple monomials (right column).15 We find that the
optimal basis functions perform uniformly better than the simple polynomials. Furthermore, the
table demonstrates that in this higher-dimensional setting, the functional approximation is more
relevant than in the univariate setting in the previous section. More precisely, here we observe
improvements in the statistical measures when using more basis functions even when keeping the
number of simulations constant.

Moving to the calculation of the company’s capital requirement, Figure 6 plots estimates for
VaR at 99.5% (a) using a fixed number of (optimal) basis functions and varying the number of
simulations, and (b) using a fixed number of simulations and varying the number of basis functions
(box plots based on 300 runs). Similarly to the previous section, Figure 6a displays that the
dispersion of the distribution of VaR is decreasing as N increases. However, for N = 3, 000, 000,
the bulk of the estimates are located between 139.11 and 140.61, which covers 95% of VaR estimates

14Since it is impossible to obtain the exact loss distribution at the risk horizon, we consider the estimated loss
distribution obtained from the LSM algorithm with M = 34 monomials and N = 30 × 106 simulations as “exact.”

15Here, the set of monomial basis functions when M = 6 in Table 2 is (1, qτ , rτ , µx+τ , q
2
τ , r

2
τ ). For M = 12 we

include all second-order terms.
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Order Singular Functions Simple Monomials

M = 4
KS 2.426× 10−2 2.776× 10−2

KL 2.151× 10−4 2.304× 10−4

JS 7.400× 10−3 7.659× 10−3

M = 6
KS 1.990× 10−3 5.560× 10−3

KL 4.591× 10−6 4.232× 10−5

JS 1.071× 10−3 3.261× 10−3

M = 12
KS 1.481× 10−3 1.708× 10−3

KL 7.137× 10−7 1.285× 10−6

JS 4.165× 10−4 5.644× 10−4

Table 2: Statistical distances between the empirical density function based on the exact realizations
and the LSM approximation using different basis functions; mean of three-hundred simulations with
N = 3, 000, 000.
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Figure 6: Box-and-whisker diagrams for 99.5% VaR calculated using the LSM algorithm with
different number of simulations N and a fixed number of basis functions (a); and with different
number of basis functions M and a fixed number of simulations (b).

and safely contains the correct estimate – illustrating the viability of the approach. We observe
a slight downward trend in the mean of the VaR99.5% in line with the positive bias result from
Proposition 3.4. In Figure 6b, we plot the distribution of 99.5% VaR for N = 3, 000, 000 and
different choices for number of basis functions M. We see that a small number of basis functions,
e.g. M = 3 or M = 5, can lead to a severe misestimation. As we increase the number of basis
functions, the estimated 99.5% VaRs converges to the exact 99.5% VaR, although the distribution
becomes more dispersed. Again, this emphasizes the relevance of the joint behavior as N and M
increase.

To analyze the viability of näıve choices, in Table 3, we compare the performance of six optimal
basis functions to various combinations of six simple polynomial basis functions. In particular, we
choose a constant term and first-order terms in each variables, and we then consider eight choices
for the remaining two terms. Again, we observe that the singular functions provide a uniformly
better fit than the polynomials. Furthermore, we notice that a poor choice in the basis function
(Combinations 5-8) lead to a severe underestimation of the VaR at 99.5%, where it appears that
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KS KL JS VaR99.5%

Singular 1.943× 10−3 4.601× 10−6 1.072× 10−3 139.09
Comb. 1 (q2

τ , r
2
τ ) 5.600× 10−3 4.233× 10−5 3.262× 10−3 140.11

Comb. 2 (q2
τ , µ

2
x+τ ) 9.447× 10−3 2.638× 10−5 2.569× 10−3 140.57

Comb. 3 (q2
τ , qτrτ ) 3.910× 10−3 3.056× 10−5 2.772× 10−3 139.83

Comb. 4 (q2
τ , qτµx+τ ) 2.751× 10−3 3.218× 10−5 2.841× 10−3 139.12

Comb. 5 (r2
τ , qτrτ ) 2.444× 10−2 2.250× 10−4 7.566× 10−3 134.57

Comb. 6 (r2
τ , qτµx+τ ) 3.671× 10−2 2.115× 10−4 7.334× 10−3 132.35

Comb. 7 (µ2
x+τ , qτrτ ) 2.117× 10−2 2.083× 10−4 7.282× 10−3 135.28

Comb. 8 (µ2
x+τ , qτµx+τ ) 3.298× 10−2 1.969× 10−4 7.079× 10−3 133.08

Table 3: Statistical distances between the empirical density function based on the exact realizations
and the LSM approximation using different combinations, and VaR at 99.5%; mean of three-hundred
simulations with N = 3, 000, 000.

omitting higher-order terms in qτ is the key issue.

6 Conclusion

We discuss a Least-Squares Monte Carlo (LSM) algorithm for estimating risk measures in “nested”
settings. The algorithm relies on functional approximations of conditional expected values and
least-squares regression. After establishing the algorithm, we analyze convergence of the approach
and examine properties when estimating VaR. Moreover, we discuss the choice of basis functions in
the functional approximation. Specifically, we show that, under certain conditions, the left singular
functions of the valuation operator that maps cash flows to capital present optimal basis functions
for a model framework. We derive optimal basis functions in settings where the underlying Markov
state variable follows a Gaussian distribution, and we apply our ideas in two relevant examples
from life insurance.

Our numerical illustrations document that the algorithm can provide viable results at relatively
low computational costs. The algorithm, therefore, provides one potential solution to pressing
practical problems such as the calculation of capital requirements in life insurance according to
the recent Solvency II directive. Two key insights emerge from our analyses in view of applying
the LSM algorithm in practical settings. First, increasing the number of basis functions comes
at a significant cost since it is necessary to simultaneously increase the number of simulations N.
This is required to establish convergence in theory, since the number of simulations typically has to
increase much faster; and also in our illustrations, the variance of the estimates increased markedly
when adding in additional basis terms. Second, in multivariate settings, a key issue is not only
choosing the functional class of basis functions – which appears less crucial in our exercises – but
rather the combinations of basis functions that are important for spanning the payoff space in view
of valuation. Even in the three-dimensional setting considered here, this is of critical importance as
näıve choices may yield significantly worse results. The choice of basis functions will become even
more important as the complexity and the dimensionality of the problem increase, as it is the case
in practical applications.



An LSM Approach to the Calculation of Capital Requirements 29

Appendix

A Proofs

Proof of Lemma 2.1. 1. Let A ∈ Ft, 0 ≤ t ≤ τ . Then:

P̃(A) = EP̃ [1A] = EP

[
∂P̃
∂P

1A

]
= EP

EP

 ∂Q
∂P

EP
[
∂Q
∂P |Fτ

]1A
∣∣∣∣∣∣Fτ


= EP

 1A

EP
[
∂Q
∂P |Fτ

]EP
[
∂Q
∂P

∣∣∣∣Fτ]
 = P(A).

2. Let X : Ω→ R be a random variable. Then:

EP̃ [X |Fτ ] =
1

EP
[
∂P̃
∂P |Fτ

]
︸ ︷︷ ︸

=1

EP

[
∂P̃
∂P

X

∣∣∣∣∣Fτ
]

= EP

 X ∂Q
∂P

EP
[
∂Q
∂P |Fτ

]
∣∣∣∣∣∣Fτ



=
1

EP
[
∂Q
∂P |Fτ

]EP
[
∂Q
∂P

X

∣∣∣∣Fτ] = EQ [X| Fτ ] .

Proof of Lemma 2.2. Linearity is obvious. For the proof of continuity, consider a sequence
h(n) → h ∈ H. Then:

EP
[
Lh(n) − Lh

]2
= EP


 T∑
j=τ

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

]2


= EP

∑
j,k

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

]
EP̃
[(
h

(n)
k − hk

)
(Yk) |Yτ

]
≤

∑
j,k

√
EP
[(

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

])2
]
×

√
EP
[(

EP̃
[(
h

(n)
k − hk

)
(Yk) |Yτ

])2
]

≤
∑
j,k

√
EP̃
[(
h

(n)
j − hj

)2

(Yj)

]
×

√
EP̃
[(
h

(n)
k − hk

)2

(Yk)

]
→ 0, n→∞,

where we used the Cauchy-Schwarz inequality, the conditional Jensen inequality, and the tower
property of conditional expectations.

Proof of Lemma 2.3. Consider the operator L(j) mapping from L2
(
Rd,B, P̃Yj

)
to L2

(
Rd,B,PYτ

)
.

Since L(j) is the (conditional) expectation under the assumption that there exists a joint density,
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it can be represented as:

L(j) x =

∫
Rd

x(y)πYj |Yτ (y|x) dy =

∫
Rd

x(y)
πYτ ,Yj (x, y)

πYτ (x)
dy

=

∫
Rd

x(y)
πYτ ,Yj (x, y)

πYj (y)πYτ (x)
πYj (y) dy =

∫
Rd

x(y) k(x, y)πYj (y) dy,

where x is an element of L2
(
Rd,B, P̃Yj

)
, πYj (y) and πYτ (x) are marginal density functions for Yj

and Yτ in L2
(
Rd,B, P̃Yj

)
and L2

(
Rd,B,PYτ

)
, respectively, and k(x, y) =

πYτ ,Yj (x,y)

πYj (y)πYτ (x) . Thus, L(j)

is an integral operator with kernel k(x, y). Moreover:∫
Rd

∫
Rd
|k(x, y)|2 πYj (y)πYτ (x) dy dx =

∫
Rd

∫
Rd
πYj |Yτ (y|x)πYτ |Yj (x|y) dy dx <∞.

Thus, L(j) is a Hilbert-Schmidt operator (e.g. Prop. VI.6.3 in Werner (2005)), and therefore com-
pact. Finally, L is the sum of L(j), j = τ, ..., T , and therefore also compact.

Proof of Proposition 3.1. PYτ is a regular Borel measure as a finite Borel measure and hence
L2
(
Rd,B,PYτ

)
is separable (see Proposition I.2.14 and p. 33 in Werner (2005)). Now if {ek, k =

1, 2, . . . ,M} are independent, by Gram-Schmidt we can find an orthonormal system S = {fk, k =
1, 2, . . . ,M} with lin{ek, k = 1, 2, . . . ,M} = linS.16 For S, on the other hand, we can find an
orthonormal basis {fk, k ∈ N} = S′ ⊃ S. Hence:

Ĉ(M)
τ =

M∑
k=1

αk ek =

M∑
k=1

α̃k︸︷︷︸
〈Cτ ,fk〉

fk →
∞∑
k=1

α̃k fk = Cτ , M →∞,

where: ∥∥∥Ĉ(M)
τ − Cτ

∥∥∥2
=

∞∑
k=M+1

|〈Cτ , fk〉|2 → 0, M →∞,

by Parseval’s identity.
For the second part, we note that:

(α̂
(N)
1 , . . . , α̂

(N)
M )′ = α̂(N) =

(
A(M,N)

)−1 1

N

N∑
i=1

e
(
Y (i)
τ

)
V (i)
τ ,

where e(·) = (e1(·), . . . , eM (·))′ and A(M,N) =
[

1
N

∑N
i=1 ek(Y

(i)
τ ) el(Y

(i)
τ )
]

1≤k,l≤M
is invertible for

large enough N since we assume that the basis functions are linearly independent. Hence:

α̂(N) → α = (α1, . . . , αM )′ =
(
A(M)

)−1
EP̃

[
e (Yτ )

(
T∑
k=τ

xk

)]
P̃-a.s.,

by the law of large numbers, where AM =
[
EP̃ [ek (Yτ ) el (Yτ )]

]
1≤k,l≤M

, so that:

Ĉ(M,N)
τ = e′ α̂(N) → e′α = Ĉ(M)

τ P̃-a.s.

16We denote by linS the (sub-)space spanned by the elements of S.
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Finally, for the third part, write:

V (i)
τ =

T∑
k=τ

xk

(
Y (i)
τ

)
=

M∑
j=1

αjej

(
Y (i)
τ

)
+ εj ,

where E [εj |Yτ ] = 0,Var [εj |Yτ ] = Σ(Yτ ), and Cov [εi, εj |Yτ ] = 0. Thus (see e.g. Section 6.13 in
Amemiya (1985)):

√
N [α− α̂(N)] −→ Normal

0,
(
A(M)

)−1 [
EP [ek(Yτ )el(Yτ )Σ(Yτ )]

]
1≤k, l≤M

(
A(M)

)−1

︸ ︷︷ ︸
ξ̃

 ,
so that: √

N
[
Ĉ(M)
τ − Ĉ(M,N)

τ

]
= e′[α− α̂(N)]

√
N −→ Normal (0, ξ(M)),

where:
ξ(M) = e′ ξ̃ e. (30)

Proof of Corollary 3.1. Relying on the notation from the proof of Proposition 3.1, we now have:

α̂(N) =
1

N

N∑
i=1

e
(
Y (i)
τ

)
V (i)
τ → α, N →∞

in L2
(

Ω,F , P̃
)

by the L2-version of the weak law of large numbers (Durett, 1996). Thus:

EP̃
[∣∣∣e(Yτ )′ α̂(N) − e(Yτ )′ α

∣∣∣] ≤ M∑
k=1

EP̃
[∣∣∣ek(Yτ )′

(
α̂

(N)
k − αk

)∣∣∣]
≤

M∑
k=1

√
EP̃
[
e2
k(Yτ )

]√
EP̃
[
α̂

(N)
k − αk

]2
→ 0, N →∞.

The last assertion in the statement is a direct consequence of the Extended Namioka Theorem in
Biagini and Fritelli (2009).

Proof of Proposition 3.2. Since (V
(i)
τ , Y

(i)
τ ) are i.i.d. as Monte Carlo trials, the first part of

Assumption 1 in Newey (1997) is automatically satisfied. The conditions in the proposition are
then exactly Assumptions 1 (part 2), 2, and 3 in his paper for d = 0. Thus, the claim follows by
the first part of Theorem 1 in Newey (1997).

Proof of Proposition 3.3. Analogously to the proof of Proposition 3.2, the first part of As-
sumption 1 in Newey (1997) is automatically satisfied. The conditions in the proposition are taken
from the second part of Assumption 1, Assumption 8, the discussion following Assumption 8, and
Assumption 9 in his paper. Thus, the claim follows by the first part of Theorem 4 in Newey
(1997).
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Proof of Corollary 3.2. The first assertion immediately follows from convergence in distribution
as discussed in Section 3.1. For the quantiles, the convergence for all continuity points of F−1

Cτ
follows

from Proposition 3.1 and the standard proof of Skorokhod’s representation theorem (see e.g. Lemma
1.7 in Whitt (2002)).

Regularity Conditions in Proposition 3.4. (Gordy and Juneja, 2010). Regularity conditions

on the joint probability function (pdf) g of (−Ĉ(M)
τ , Z(N)):

• The joint pdf gN (·, ·), its partial derivatives ∂
∂ygN (y, z), and ∂2

∂y2
gN (y, z) exist for each N and

for all (y, z).

• For N ≥ 1, there exist non-negative functions p0,N (·), p1,N (·), and p2,N (·) such that:

– gN (y, z) ≤ p0,N (z),

–
∣∣∣ ∂∂ygN (y, z)

∣∣∣ ≤ p1,N (z),

–
∣∣∣ ∂2∂y2 gN (y, z)

∣∣∣ ≤ p2,N (z), and

for all y and z. In addition:

sup
N

∫ ∞
−∞
|z|rpi,N (z)dz <∞

for i = 0, 1, 2 and 0 ≤ r ≤ 4.

The proof of Proposition 3.4 directly follows Proposition 2 in Gordy and Juneja (2010).

Singular Value Decomposition of a Compact Operator (Section 4.2). Suppose the oper-
ator A mapping from H1 to H2 is compact, where H1 and H2 are separable Hilbert spaces. Then,
A can be represented in the following form (see Section VI.3 in Werner (2005) or Huang (2012)):

Ax =
∞∑
k=1

λk〈x, gk〉H1fk, (31)

where:

• 〈·, ·〉H1 denotes the inner product in H1;

• {λ2
k} are non-zero eigenvalues of A∗A and AA∗ with λ1 ≥ λ2 ≥ · · · , counted according to

their multiplicity. Here, λk is called the k-th singular value of A;

• {gk} ⊂ H1, called the (right) singular functions, are the orthonormal eigenfunctions of A∗A;
and

• {fk} ⊂ H2, called the (left) singular functions, are the orthonormal eigenfunctions of AA∗

satisfying Agk = λk fk.

The representation (31) is called singular value decomposition (SVD) of A and the triple (λk, gk, fk)
is called singular system for A. The functional sequences, {gk}k≥1 and {fk}k≥1, form complete
orthonormal sequences of H1 and H2, respectively. The singular values λk are non-negative and
the only possible accumulation point is zero.
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Proof of Proposition 4.1. We consider the approximation of L by an arbitrary rank-M operator
LF , which can be represented as:

LF =
M∑
k=1

αk 〈· , uk〉 ek,

where {αk}Mk=1 ⊆ R+, {uk}Mk=1 are orthonormal inH, and {ek}Mk=1 are orthonormal in L2
(
Rd,B,PYτ

)
.

Denote by L∗F the operator when choosing (αk, uk, ek) = (ωk, sk, ϕk). Then:

inf
LF
‖L− LF ‖2 ≤ sup

‖x‖=1
‖Lx− L∗Fx‖2

= sup
‖x‖=1

∥∥∥∥∥
∞∑

k=M+1

ωk〈x, sk〉ϕj

∥∥∥∥∥
2

= sup
‖x‖=1

∞∑
k=M+1

ω2
k 〈x, sk〉2 = ω2

M+1.

On the other hand, consider any alternative system (αk, uk, ek) for an arbitrary finite-rank operator
LF . Then choose a non-zero x0 such that x0 ∈ lin{s1, ..., sM+1} ∩ lin{u1, ..., uM}⊥ 6= {0}. Note
that L− LF is compact and bounded. Therefore:

‖L− LF ‖2 ≥
‖Lx0 − LF x0‖2

‖x0‖2
=
‖Lx0‖2

‖x0‖2

=

∑M+1
k=1 ω2

k|〈x0, sk〉|2∑M+1
k=1 |〈x0, sk〉|2

≥ ω2
M+1.

Hence:
inf
LF
‖L− LF ‖2 = ω2

M+1 = ‖L− L∗F ‖.

Now since:
inf
LF
‖L− LF ‖2 = inf

{e1,...,eM}
‖L− P (e1, ..., eM ) · L‖2,

where P (e1, ..., eM ) denotes the orthogonal projection on the subspace spanned by (e1, ..., eM ), the
claim follows by Equation (7).

Proof of Proposition 4.2. Proceeding as in Equation (9) and with Equation (7), we obtain:

inf
αM

sup
y∈Y

∣∣∣∣∣Cτ (y)−
M∑
k=1

αM,k ek(y)

∣∣∣∣∣ ≤ sup
y∈Y

∣∣∣Cτ (y)− Ĉ(M)
τ (y)

∣∣∣
= sup

y∈Y
|
∞∑

k=M+1

ωk 〈x, sk〉ϕk(y)|

≤
∞∑

k=M+1

ωk |〈x, sk〉| sup
y∈Y
|ϕk(y)|

≤
∞∑

k=M+1

ωk ‖x‖ ‖sk‖ sup
y∈Y
|ϕk(y)|

=

∞∑
k=M+1

ωk ‖x‖ sup
y∈Y
|ϕk(y)| = O (ωM )
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for a fixed x since the {ϕk} are uniformly bounded, where the second and third inequalities follow
by the triangle and Cauchy-Schwarz inequalities, respectively.

Then, going through the assumptions of Proposition 3.2 with B = I and e(M) = (e1, ..., eM )′,
we obtain:

EP̃
[
ẽ(M)(Yτ )ẽ(M)(Yτ )′

]
= I

due to the orthonormality of the singular functions. Therefore, the smallest eigenvalues is bounded
away from zero uniformly for everyM.Moreover, for fixed y ∈ Y, ||ẽ(M)(y)|| =

√
ϕ1(y)2 + · · ·ϕM (y)2,

so that:

sup
y∈Y
||ẽ(M)(y)|| = sup

y∈Y

√
ϕ1(y)2 + · · ·ϕ1(y)2

≤

√√√√ M∑
k=1

sup
y∈Y

ϕk(y)2 ≤
√

max
1≤k≤M

sup
y∈Y

ϕk(y) ·M = C
√
M = ζ0(M)

since the {ϕk} are uniformly bounded. Thus, the claim follows by Proposition 3.2.

Proof of Lemma 4.1. The assertions on the conditional distributions are standard. For showing
that L is compact, we check that the transition and the reverse transition density functions satisfy
the condition in Lemma 2.3. Note that the transition density function can be written as:

πYT |Yτ (y|x) = g(y;µT + Γ′Σ−1
τ (x− µτ ),ΣT |τ )

=
1

(2π)d/2|ΣT |τ |1/2
exp

[
−1

2

(
y − µT − Γ′Σ−1

τ (x− µτ )
)′

Σ−1
T |τ
(
y − µT − Γ′Σ−1

τ (x− µτ )
)]

=
1

(2π)d/2|ΣT |τ |1/2

∣∣Στ (Γ′)−1ΣT |τΓ−1Στ
∣∣1/2∣∣Στ (Γ′)−1ΣT |τΓ−1Στ
∣∣1/2

× exp

[
−1

2

(
x− µτ − Στ (Γ′)−1(y − µT )

)′
Σ−1
τ ΓΣ−1

T |τΓ′Σ−1
τ

(
x− µτ − Στ (Γ′)−1(y − µT )

)]
=
|Στ |
|Γ|

g
(
x;µτ + Στ (Γ′)−1(y − µT ),Στ (Γ′)−1ΣT |τΓ−1Στ

)
.

We evaluate the following integral:∫
Rd
πYT |Yτ (y|x)πYτ |YT (x|y)dx

=
|Στ |
|Γ|

∫
Rd
g
(
x;µτ + Στ (Γ′)−1(y − µT ),Στ (Γ′)−1ΣT |τΓ−1Στ

)
× g

(
x;µτ + ΓΣ−1

τ (y − µT ),Στ |T
)
dx

=
|Στ |

|Γ|(2π)d/2
1∣∣Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T

∣∣1/2
× exp

[
− 1

2

(
Στ (Γ′)−1(y − µT )− ΓΣ−1

T (y − µT )
)′ (

Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T
)−1

×
(
Στ (Γ′)−1(y − µT )− ΓΣ−1

T (y − µT )
) ]

=
|Στ |

|Γ|(2π)d/2
1∣∣Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T

∣∣1/2
× exp

[
− 1

2
(y − µT )′

(
Γ−1Στ − Σ−1

T Γ′
) (

Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T
)−1 (

Στ (Γ′)−1 − ΓΣ−1
T

)︸ ︷︷ ︸
V −1

(y − µT )

]
= C1 × g(y;µT , V ),
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where we use results on the product of Gaussian densities (Vinga, 2004) and where C1 is an
appropriate constant to obtain g(y;µT , V ). Therefore:∫

Rd

∫
Rd
πYT |Yτ (y|x)πYτ |YT (x|y) dx dy =

∫
Rd
C1g(y;µT , V ) dy = C1 <∞.

Proof of Lemma 4.2. L∗ can be found via:

〈Lh,m〉πYτ =

∫
Rd
Lh(x)m(x)πYτ (x) dx =

∫
Rd

[∫
Rd
h(y)πYT |Yτ (y|x) dy

]
m(x)πYτ (x) dx

=

∫
Rd
h(y)

[∫
Rd
m(x)πYτ |YT (x|y) dx

]
πYT (y) dy = 〈h, L∗m〉πYT ,

where L∗m(y) =
∫
Rdm(x)πYτ |YT (x|y) dx. We obtain for LL∗:

LL∗ϕ(x) =

∫
Rd
L∗ϕ(s)πYT |Yτ (s|x) ds

=

∫
Rd

[∫
Rd
ϕ(y)πYτ |YT (y|s) dy

]
πYT |Yτ (s|x) ds

=

∫
Rd
ϕ(y)

∫
Rd
πYτ |YT (y|s)πYT |Yτ (s|x) ds︸ ︷︷ ︸

KA(x,y)

dy.

It is useful to express the reverse density as in the proof of Lemma 4.1:

g(y;µYτ |s,Στ |T ) =
|ΣT |
|Γ|

g
(
s;µT + ΣTΓ−1(y − µτ ), ΣTΓ−1Στ |T (Γ′)−1ΣT

)
.

Hence:

KA(x, y) =

∫
Rd
πYτ |YT (y|s)πYT |Yτ (s|x) ds

=
|ΣT |
|Γ|

∫
Rd
g
(
s;µT + ΣTΓ−1(y − µτ ), ΣTΓ−1Στ |T (Γ′)−1ΣT ]

)
× g(s;µT |x,ΣT |τ ) ds

=
|ΣT |
|Γ|
× 1

(2π)d/2
∣∣ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

∣∣1/2
× exp

(
− 1

2

(
ΣTΓ−1(y − µτ )− Γ′Σ−1

τ (x− µτ )
)′

×
(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)−1 (
ΣTΓ−1(y − µτ )− Γ′Σ−1

τ (x− µτ )
))

=
1

(2π)d/2
∣∣ΓΣ−1

T

(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)
Σ−1
T Γ′

∣∣1/2
× exp

(
− 1

2

(
y − µτ − ΓΣ−1

T Γ′Σ−1
τ (x− µτ )

)′
(Γ−1)′ΣT

(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)−1

× ΣTΓ−1
(
y − µτ − ΓΣ−1

T Γ′Σ−1
τ (x− µτ )

))
= g
(
y;µτ + ΓΣ−1

T Γ′Σ−1
τ︸ ︷︷ ︸

A

(x− µτ ), Στ − ΓΣ−1
T Γ′Σ−1

τ ΓΣ−1
T Γ′

)
= g
(
y;µτ +A(x− µτ )︸ ︷︷ ︸

µA(x)

, Στ −AΣτA
′︸ ︷︷ ︸

ΣA

)
= g
(
y;µA(x),ΣA

)
,
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where in the third equality we again rely on results on the products of Gaussian densities from
Vinga (2004). L∗L can be derived analogously.

Proof of Lemma 4.3. We start by recalling the considerations from Khare and Zhou (2009): Let
(Xt) on Rd be a MAR(1) process satisfying the following stochastic difference equation:

Xt = ΦXt−1 + ηt, t ≥ 1, (32)

where Φ ∈ Rd×d and (ηt)t≥1 are independent and identically distributed, η1 ∼ N(0, H). (Xt) has a
unique stationary distribution N(0,Σ) if and only if H = Σ− ΦΣΦ′, and the process is reversible
if and only if ΦΣ = ΣΦ′. Khare and Zhou (2009) show that if these assumptions are satisfied, the
transformed Markov operator for (32) has eigenvalues which are products of eigenvalues of Φ and
the corresponding eigenfunctions are products of Hermite polynomials.

Now note that for a random variable Y that is distributed according to KA(x, ·), we can write:

Y − µτ = A(x− µτ ) + ζA, (33)

where ζ ∼ N(0,ΣA). Since from Lemma 4.2 we have that ΣA = Στ −AΣτA
′ and:

AΣτ = ΓΣ−1
T Γ′ = Στ A

′,

for Σ = Στ the operator LL∗ has the same structure of the Markov operator for (32) that is
reversible and stationary.

Following the approach by Khare and Zhou (2009), denote by Σ
1/2
τ the square root matrix of

Στ . Then:
Σ−1/2
τ AΣ1/2

τ = Σ−1/2
τ ΓΣ−1

T Γ′Σ−1/2
τ

is symmetric and thus orthogonally diagonalizable:

Σ−1/2
τ AΣ1/2

τ = PΛP ′ ⇔ A = (Σ1/2
τ P ) Λ (P ′Σ−1/2

τ ).

In particular, the entries of the diagonal matrix Λ are the eigenvalues of A.
Now for the transformation (11) of the random vector Y from (33), zP (Y ), we obtain:

EKA
[
zP (Y )|x

]
= P ′Σ−1/2

τ A(x− µτ )

= P ′Σ−1/2
τ Σ1/2

τ PΛP ′Σ−1/2
τ (x− µτ ) = ΛzP (x),

and:

VarKA
[
zP (Y )|x

]
= P ′Σ−1/2

τ ΣAΣ−1/2
τ P

= P ′Σ−1/2
τ (Στ −AΣτA

′)Σ−1/2
τ P = I − Λ2.

Moreover:
EπYτ

[
zP (Yτ )

]
= P ′Σ−1/2

τ EπYτ [Yτ − µτ ] = 0

and:
VarπYτ

[
zP (Yτ )

]
= P ′Σ−1/2

τ ΣτΣ−1/2
τ P = I.

The second part follows analogously.
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Proof of Proposition 4.3. For fixed zPi (Y ), we obtain from Carrasco and Florens (2011) that
the univariate orthonormal Hermite polynomial of order ni is an eigenfunction under KA :

EKA
[
hni(z

P
i (Y ))|x

]
= λnii hni(z

P
i (x)).

Moreover, the product of these polynomials are also eigenfunction since:

EKA
[
Πd
i=1hni(z

P
i (Y ))|x

]
= Πd

i=1EKA
[
hni(z

P
i (Y ))|x

]
=
(

Πd
i=1λ

ni
i

)(
Πd
i=1hni(z

P
i (x))

)
.

The orthogonality of the eigenfunctions is proved in Khare and Zhou (2009). Note that the product
of normalized Hermite polynomials is already normalized since:

EπYτ

[(
Πd
i=1hni(z

P
i (Y ))

)2
]

= EπYτ
[
Πd
i=1hni

(
zPi
)2

(Y )
]

= Πd
i=1EπYτ

[
hni
(
zPi (Y )

)2]
= 1.

Right singular functions are obtained similarly from zQi (X).

Proof of Lemma 5.1. Under P, we have:

rτ = r0e
−ατ + γ(1− e−ατ ) + σ

∫ τ

0
e−α(τ−t)dWt,

so that rτ ∼ N(µτ , σ
2
τ ) with µτ = γ − (γ − r0)e−ατ and σ2

τ = σ2

2α(1− e−2ατ ).
Under QT , we have:

rT = rτe
−α(T−τ) +M(τ, T ) + σ

∫ T

τ
e−α(T−t)dZTt ,

where:

M(τ, T ) =

(
γ̄ − σ2

α2

)(
1− e−α(T−τ)

)
+
σ2

2α

(
1− e−2α(T−τ)

)
,

so that rT |rτ ∼ N(µrT |rτ , σ
2
rT |rτ ) with µrT |rτ = rτe

−α(T−τ) + M(τ, T ) and σ2
rrT |rτ

= σ2

2α(1 −
e−2α(T−τ)). Note that this distribution specifies the transition density of rT given rτ . The un-
conditional mean and variance of rT is given by:

µT = EP̃ [rT ] = EP
[
EQT [rT |rτ ]

]
= EP

[
rτe
−α(T−τ) +M(τ, T )

]
= µτe

−α(T−τ) +M(τ, T )

and

σ2
T = VarP̃ [rT ] = EP

[
VarQT [rT |rτ ]

]
+ VarP

[
EQT [rT |rτ ]

]
= EP

[
σ2

2α

(
1− e−2α(T−τ)

)]
+ VarP

[
rτe
−α(T−τ) +M(τ, T )

]
=
σ2

2α

(
1− e−2α(T−τ)

)
+
σ2

2α

(
1− e−2ατ

)
e−2α(T−τ) =

σ2

2α

(
1− e−2αT

)
,

so that rT ∼ N(µT , σ
2
T ).

Moreover:

Cov(rτ , rT ) = EP̃(rT · rτ )− µτµT = EP
[
EQT [rT · rτ |rτ ]

]
− µτµT

= e−α(T−τ)σ2
τ .
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Thus, we have for the joint distribution of rτ and rT :[
rτ
rT

]
∼ N

([
µτ
µT

]
,

[
σ2
τ , e−α(T−τ)σ2

τ

e−α(T−τ)σ2
τ , σ2

T

])
,

with ρ = ρrτ ,rT = Corr(rτ , rT ) = e−α(T−τ) 1−e−2ατ

1−e−2αT .

Proof of Lemma 5.2. Under P, the solutions of (22), (23), and (24) at time τ are:

qτ = q0 +

(
m− 1

2
σ2
S

)
τ + σS

∫ τ

0
dWS

s ,

rτ = r0e
−ατ + γ

(
1− e−ατ

)
+ σr

∫ τ

0
e−α(τ−t)dW r

t ,

µx+τ = µxe
κτ + ψ

∫ τ

0
eκ(τ−u)dWµ

u .

Thus, the joint Gaussian distribution of Yτ is given by: qτ
rτ
µx+τ

 ∼ N


 q0 +

(
m− 1

2σ
2
S

)
τ

r0e
−ατ + γ (1− e−ατ )

µxe
κτ

 ,
 σ2

S τ ρ12σSσrBr(0, τ) ρ13σSψBµ(0, τ)

ρ12σSσrBr(0, τ) σ2
r

1−e−2ατ

2α ρ23σrψ
1−e−(α−κ)τ

α−κ
ρ13σSψBµ(0, τ) ρ23σrψ

1−e−(α−κ)τ

α−κ ψ2 e2κτ−1
2κ


 ,

(34)

so that µτ and Στ are given by

µτ =

 q0 +
(
m− 1

2σ
2
S

)
τ

r0e
−ατ + γ (1− e−ατ )

µxe
κτ

 , Στ =

 σ2
S τ ρ12σSσrBr(0, τ) ρ13σSψBµ(0, τ)

ρ12σSσrBr(0, τ) σ2
r

1−e−2ατ

2α ρ23σrψ
1−e−(α−κ)τ

α−κ
ρ13σSψBµ(0, τ) ρ23σrψ

1−e−(α−κ)τ

α−κ ψ2 e2κτ−1
2κ

 .
To derive the distribution under QE , first note that for τ ≤ s < T :

rs =e−α(s−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(s−τ)

)
+

σ2
r

2α2

(
e−α(T−s) − e−α(T+s−2τ)

)
− ρ23σrψ

κ

(
eκ(T−s) − e−α(s−τ)+κ(T−τ)

α− κ
− 1− e−α(s−τ)

α

)
+ σr

∫ s

τ

e−α(s−y)dZry ,

so that the integral of
∫ T
τ rs ds can be evaluated using the stochastic Fubini theorem:∫ T

τ
rsds =

(
1− e−α(T−τ)

α

)
rτ +

(
γ̄ − σ2

r

α2

)(
T − τ − 1− e−α(T−τ)

α

)

+
σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)

− ρ23σrψ

κ

(
eκ(T−τ) − 1

κ(α− κ)
− eκ(T−τ) − e−(α−κ)(T−τ)

α(α− κ)
− 1

α

(
T − τ − 1− e−α(T−τ)

α

))

+ σr

∫ T

τ

1− e−α(T−y)

α
dZry .
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Thus, under QE with known Yτ , the solutions of (27), (28), and (29) are:

qT =qτ +

(
1− e−α(T−τ)

α

)
rτ +

(
γ̄ − σ2

r

α2

)(
T − τ − 1− e−α(T−τ)

α

)
+

σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)
− 1

2
σ2
S(T − τ)− ρ12σSσr

α

(
T − τ − 1− e−α(T−τ)

α

)
− ρ13σSψ

κ

(
eκ(T−τ) − 1

κ
− T + τ

)
− ρ23σrψ

κ

(
eκ(T−τ) − 1

κ(α− κ)
− eκ(T−τ) − e−(α−κ)(T−τ)

α(α− κ)
− 1

α

(
T − τ − 1− e−α(T−τ)

α

))
+ σS

∫ T

τ

dZSs + σr

∫ T

τ

1− e−α(T−y)

α
dZry ,

rT =e−α(T−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(T−τ)

)
+

σ2
r

2α2

(
1− e−2α(T−τ)

)
− ρ23σrψ

κ

(
1− e−(α−κ)(T−τ)

α− κ
− 1− e−α(T−τ)

α

)
+ σr

∫ T

τ

e−α(T−y)dZry ,

µx+T =eκ(T−τ)µx+τ −
ψ2

κ

(
e2κ(T−τ) − 1

2κ
− eκ(T−τ) − 1

κ

)
− ρ23σrψ

α

(
eκ(T−τ) − 1

κ
− 1− e−(α−κ)(T−τ)

α− κ

)
+ ψ

∫ T

τ

eκ(T−t)dZµt ,

so that the (Gaussian) conditional distribution of YT |Yτ is given by:

 qT
rT
µx+T

 |Yτ ∼ N


 µqT |qτ

µrT |rτ
µµx+T |µx+τ

 ,
 σ2

qT |qτ σqT ,rT |qτ ,rτ σqT ,µx+T |qτ ,µx+τ
σqT ,rT |qτ ,rτ σ2

rT |rτ σrT ,µx+T |rτ ,µx+τ
σqT ,µx+T |qτ ,µx+τ σrT ,µx+T |rτ ,µx+τ σ2

µx+T |µx+τ


︸ ︷︷ ︸

ΣT |τ


,

(35)
where:

µqT |qτ = qτ +Br(τ, T )rτ +

(
γ̄ − σ2

r

α2

)(
T − τ − 1− e−α(T−τ)

α

)
+

σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)
− ρ23σrψ

κ

(
eκ(T−τ) − 1

κ(α− κ)
− eκ(T−τ) − e−(α−κ)(T−τ)

α(α− κ)
− 1

α

(
T − τ − 1− e−α(T−τ)

α

))
− 1

2
σ2
S(T − τ)− ρ12σSσr

α

(
T − τ − 1− e−α(T−τ)

α

)
− ρ13σSψ

κ

(
eκ(T−τ) − 1

κ
− T + τ

)
,

µrT |rτ = e−α(T−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(T−τ)

)
+

σ2
r

2α2

(
1− e−2α(T−τ)

)
− ρ23σrψ

κ

(
1− e−(α−κ)(T−τ)

α− κ
− 1− e−α(T−τ)

α

)
,

µµx+T |µx+τ =µx+τe
κ(T−τ) − ρ23σrψ

α

(
eκ(T−τ) − 1

κ
− 1− e−(α−κ)(T−τ)

α− κ

)
− ψ2

κ

(
e2κ(T−τ) − 1

2κ
− eκ(T−τ) − 1

κ

)
,
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σ2
qT |qτ =σ2

S(T − τ) +
σ2
r

α2

(
T − τ − 2

1− e−α(T−τ)

α
+

1− e−2α(T−τ)

2α

)
+

2ρ12σSσr
α

(
T − τ − 1− e−α(T−τ)

α

)
,

σqT ,rT |qτ ,rτ = ρ12σSσr

(
1− e−α(T−τ)

α

)
+
σ2
r

α

(
1− 2e−α(T−τ) + e−2α(T−τ)

2α

)
,

σqT ,µx+T |qτ ,µx+τ = ρ13σSψ

(
eκ(T−τ) − 1

κ

)
+
ρ23σrψ

α

(
eκ(T−τ) − 1

κ
− 1− e−(α−κ)(T−τ)

α− κ

)
,

σ2
rT |rτ =σ2

r

(
1− e−2α(T−τ)

2α

)
,

σrT ,µx+T |rτ ,µx+τ = ρ23σrψ

(
1− e−(α−κ)(T−τ)

α− κ

)
,

σ2
µx+T |µx+τ =ψ2

(
e2κ(T−τ) − 1

2κ

)
.

It is possible to write the conditional mean of YT given Yτ in the following affine form: µqT |qτ
µrT |rτ

µµx+T |µx+τ

 =

1 1−e−α(T−τ)
α 0

0 e−α(T−τ) 0

0 0 eκ(T−τ)


︸ ︷︷ ︸

H

 qτ
rτ
µx+τ

+ Cτ

=HYτ + Cτ ,

where Cτ is a constant matrix defined by remaining terms of mean vector of YT |Yτ after defining
HYτ . The unconditional distribution of YT under P̃ is also Gaussian since Yτ and YT |Yτ follow
Gaussian distributions. Thus, it suffices to specify a mean vector and a covariance matrix of YT
under P̃ to specify its distribution:

µT = EP̃[YT ] = EP
[
EQE [YT |Yτ ]

]
= EP [HYτ + Cτ ] = Hµτ + Cτ ,

ΣT = CovP̃[YT ] = CovP
[
EQE [YT |Yτ ]

]
+ EP

[
CovQE [YT |Yτ ]

]
= CovP [HYτ + Cτ ] + EP [ΣT |τ

]
= HΣτH

′ + ΣT |τ .

Hence, YT ∼ N(µT , ΣT ).
The final step is to specify the joint distribution of Yτ and YT by finding Cov(Yτ , YT ). Note

that:

Γ = Cov(Yτ , YT ) = EP̃[YτY
′
T ]− EP̃[Yτ ]EP̃[Y ′T ]

= EP[EQE [YτY
′
T |Yτ ]]− µτµ′T

= EP [Yτ (Y ′τH
′ + C ′τ )

]
− µτµ′T

= ΣτH
′.

Therefore, [
Yτ
YT

]
∼ N

([
µτ
µT

]
,

[
Στ Γ
Γ′ ΣT

])
.
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