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Abstract
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gression techniques. We study convergence of the algorithm and analyze the resulting
estimate for practically relevant risk measures. Importantly, we address the problem
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is given by the left singular functions of the corresponding conditional expectation op-
erator. Our numerical examples demonstrate that the algorithm can produce accurate
results at relatively low computational costs, particularly when relying on the optimal
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1 Introduction

Many financial risk management applications entail a reevaluation of the company’s assets
and liabilities at some time horizon 7 — sometimes called a risk horizon — for a large number
of realizations of economic and firm-specific (state) variables. The resulting empirical loss
distribution is then applied to derive risk measures such as Value-at-Risk (VaR) or Expected
Shortfall (ES), which serve as the basis for capital requirements within several regulatory
frameworks such as Basel III for banks and Solvency II for insurance companies. However,
the high complexity of this nested computation structure leads firms to struggle with the
implementation.

This paper discusses an approach to this problem based on least-squares regression and
Monte Carlo simulations akin to the well-known Least-Squares Monte Carlo method (LSM)
for pricing non-European derivatives introduced by Longstaff and Schwartz (2001). Anal-
ogously to the LSM pricing method, this approach relies on two approximations (Clément
et al., 2002): On the one hand, the capital random variable, which can be represented as a
risk-neutral conditional expected value at the risk horizon 7, is replaced by a finite linear
combination of functions of the state variables, so-called basis functions. As the second ap-
proximation, Monte Carlo simulations and least-squares regression are employed to estimate
the coefficients in this linear combination. Hence, for each realization of the state variables,
the resulting linear combination presents an approximate realization of the capital at 7, and
the resulting sample can be used for estimating relevant risk measures.

Although this approach is increasingly popular in practice for calculating economic capital
particularly in the insurance industry (Barrie and Hibbert, 2011; Milliman, 2013; DAV, 2015)
and has been used in several applied research contributions (Floryszczak et al., 2016; Pelsser
and Schweizer, 2016, e.g.), these papers do not provide a detailed analysis of the properties
of this algorithm or insights on how to choose the basis functions. Our work closes this gap
in literature.

We begin our analysis by introducing our setting and the algorithm. As an important
innovation, we frame the estimation problem via a wvaluation operator that maps future
payoffs (as functionals of the state variables) to the conditional expected value at the risk
horizon. We formally establish convergence of the algorithm for the risk distribution (in
probability) and for families of risk measures under general conditions when taking limits
sequentially in the first and second approximation. In addition, by relying on results from
Newey (1997) on the convergence of series estimators, we present conditions for the joint
convergence of the two approximations in the general case and more explicit results for the
practically relevant case of orthonormal polynomials.

We then analyze in more detail the properties of the estimator for the important special
case of VaR, which serves as the risk measure for regulatory frameworks such as Solvency
II. By building on ideas from Gordy and Juneja (2010), we show that for a fixed number of
basis functions, the least-squares estimation of the regression approximation, while unbiased
when viewed as an estimator for the individual loss, carries a positive bias term for this
tail risk measure. It is important to note, however, that this result only pertains to the
regression approximation but not the approximation of the actual loss variables via the
linear combination of the basis functions — which is the crux of the algorithm. In particular,
the adequacy of the estimate crucially depends on the choice of basis functions.
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This is where the operator formulation becomes especially useful. By expressing the
valuation operator via its singular value decomposition (SVD), we show that under certain
conditions, the (left) singular functions present an optimal choice for the basis functions.
More precisely, we demonstrate that these singular functions approximate the valuation
operator — and, thus, the distribution of relevant capital levels — in an optimal manner. The
intuition is that similarly to an SVD for a matrix, the singular functions provide the most
important dimensions in spanning the image space of the operator.

We comment on the joint convergence of the LSM algorithm under this choice and also the
calculation of the singular functions. While in general the decomposition has to be carried out
numerically, for certain classes of models it is possible to derive analytic expressions. As an
important example class for applications, we discuss the calculation of the SVD — and, thus,
the derivation of optimal basis functions — for models with (multivariate) Gaussian transition
densities. In this case, it is straightforward to show that the underlying assumptions are
satisfied. And, by following ideas from Khare and Zhou (2009), it is possible to derive
the singular functions, which take the form of products of Hermite polynomials of linearly
transformed states, by solving a related eigenvalue problem. We note that, in analogy to e.g.
Discriminant Analysis, these results will also be useful in non-Gaussian settings by proposing
approximately optimal basis functions that solely rely on the first two moments of the state
vector distribution.

We illustrate our theoretical results considering popular annuitization guarantees within
Variable Annuity contracts, so-called Guaranteed Minimum Income Benefits (GMIBs). In
a setting with three stochastic risk factors (investment fund, interest, and mortality), we
demonstrate that the algorithm delivers reliable results when relying on sufficiently many
basis functions and simulations. Here we emphasize that the optimal choice given by the
singular functions not only determines the functional class — which are Hermite polynomials
in this case, although of course different classes of univariate polynomials will generate the
same span. But they also specify the most important combinations of stochastic factors,
an indeed in our setting it turns out that higher-order combinations of certain risk factors
are more important than lower-order combinations of others. This latter aspect is very
relevant in practical settings with high-dimensional state vectors, so that our results provide
immediate guidance for these pressing problems. We also illustrate the tradeoff between
sample variance — governed by the number of considered scenarios — and the functional
approximation — depending on the number of considered basis functions. We document that
navigating this tradeoff is important for obtaining viable results, and doing so is nontrivial in
general. In particular, we comment on pitfalls when using regularized regression approaches
in this context.

Related Literature and Organization of the Paper

Our approach is inspired by the LSM approach for derivative pricing and relies on cor-
responding results (Carriere, 1996; Tsitsiklis and Van Roy, 2001; Longstaff and Schwartz,
2001; Clément et al., 2002). A similar regression-based algorithm for risk estimation is in-
dependently studied in Broadie et al. (2015). Their results are similar to our sequential
convergence results in Section 3.1, and the authors additionally introduce a weighted version
of their regression algorithm. Moreover, Benedetti (2017) provides joint convergence results
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under an alternative set of conditions. However, these authors do not contemplate how to
optimally choose the basis functions — although they emphasize the importance of this choice
— which is a key contribution of our paper.

We refer to Makur and Zheng (2016) for the relevance of the SVD of conditional expec-
tations in the information theory literature, which is driven by similar considerations. In
particular, the authors derive the analogous SVD for the Gaussian setting in the univariate
case (see also Abbe and Zheng (2012)). The relevance of Hermite polynomials in this con-
text may not come as a surprise from a stochastic process perspective due to their relevance
in the spectral analysis of the Ornstein-Uhlenbeck semigroup (Linetsky, 2004). However,
as detailed in Makur and Zheng (2016, p. 636), we note that the setting here is distinct
from Markov semigroup theory, where the relevant spaces are framed in terms of invariant
measures and the time interval varies.

As already indicated, the LSM approach enjoys popularity in the context of calculating
risk capital for life insurance liabilities in practice and applied research, so that providing
a theoretical foundation and guidance for its application are key motivating factors for this
paper. A number of recent contributions discuss the so-called replicating portfolio approach
as an alternative that enjoys certain advantages (Cambou and Filipovié¢, 2018; Natolski and
Werner, 2017, e.g.), and Pelsser and Schweizer (2016) point out that the difference between
the LSM versus the replicating portfolio calculation aligns with the so-called regression-now
versus the so-called regression-later algorithm, respectively, for non-European option pricing
(Glasserman and Yu, 2002). While a detailed comparison is beyond the scope of this paper,
we note that although indeed in simple settings the performance of regress-later approaches
appears superior (Beutner et al., 2013), the application comes with several caveats regarding
the existence of suitable financial securities, the choice of the basis functions, and other
complications in high-dimensional settings (Pelsser and Schweizer, 2016; Ha, 2016).

Another set of recent papers propose non-parametric smoothing approaches in the nested
simulations context, e.g. by relying on Gaussian process emulation (‘“kriging”) or kernel
smoothing (Liu and Staum, 2010; Chen et al., 2012; Hong et al., 2017; Risk and Ludkovski,
2017). In addition to the benefit of relative simplicity of LSM in practical applications, the
non-parametric approaches may also suffer from limitations in high-dimensional settings due
to the curse of dimensionality. Indeed, Hong et al. (2017) show that already starting in
five dimensions, the convergence properties of a basic nested simulations estimator can be
superior. This is particularly relevant in the insurance context that we have in our focus,
since problems are usually high-dimensional and it generally is not possible to decompose
enterprise-wide risk measurement into lower dimensional problems (Hong et al., 2017) due to
the relevance of firm specific variables for all contracts. However, as pointed out by Risk and
Ludkovski (2017, Sec. 5.3), integrating regression-based approaches as considered here with
emulation techniques presents a promising avenue for future research. Similarly, tailoring
our approach to the evaluation of specific risk measures, e.g. those that focus on the tail of
the distribution such as VaR and ES following ideas of Glasserman et al. (2000), Lan et al.
(2010), and Broadie et al. (2011), presents an interesting question left for future research.

The remainder of the paper is structured as follows: Section 2 lays out the simulation
framework and the algorithm; Section 3 addresses convergence of the algorithm and analyzes
the estimator in special cases; Section 4 discusses optimal basis functions and derives them
in models with Gaussian transition densities; Section 5 provides our numerical example; and,
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finally, Section 6 concludes. Proofs and technical details are relegated to the Appendix.

2 The LSM Approach

2.1 Simulation Framework

Let (0, F,F = (Fi)iepo,r), P) be a complete filtered probability space on which all relevant
quantities exist, where T" corresponds to the longest-term asset or liability of the company in
view and PP denotes the physical measure. We assume that all random variables in what fol-
lows are square-integrable (in L?(2, F,P)). The sigma algebra JF; represents all information
up to time ¢, and the filtration F is assumed to satisfy the usual conditions.

The uncertainty with respect to the company’s future assets and liabilities arises from
the uncertain development of a number of influencing factors, such as equity returns, interest
rates, demographic or loss indices, etc. We introduce the d-dimensional, sufficiently regular
Markov process Y = (Yy)icjo,r) = (Yers-- -, Yea)iepor), d € N, the so-called state process, to
model this uncertainty. We assume that all financial assets in the market can be expressed
in terms of Y. Non-financial risk factors can also be incorporated (see e.g. Zhu and Bauer
(2011) for a life insurance setting that includes demographic risk). In this market, we
take for granted the existence of a risk-neutral probability measure (martingale measure) Q
equivalent to P under which payment streams can be valued as expected discounted cash
flows with respect to a given numéraire process (N¢):e(o,17-

In financial risk management, we are now concerned with the company’s financial situa-
tion at a certain (future) point in time 7, 0 < 7 < T, which we refer to as the risk horizon.
More specifically, based on realizations of the state process Y over the time period [0, 7] that
are generated under the physical measure P, we need to assess the available capital C, at
time 7 calculated as the market value of assets minus liabilities. This amount can serve as
a buffer against risks and absorb financial losses. The capital requirement is then defined
via a risk-measure p applied to the capital random variable. For instance, if the capital
requirement is cast based on VaR, the capitalization at time 7 should be sufficient to cover
the net liabilities at least with a probability «, i.e. the additionally required capital is:

VaR,(—C,) =inf{z e R|P(z+ C; >0) > a}. (1)

The capital at the risk horizon, for each realization of the state process Y, is derived
from a market-consistent valuation approach. While the market value of traded instruments
is usually readily available from the model (“mark-to-market”), the valuation of complex
financial positions on the firm’s asset side such as portfolios of derivatives and/or the valua-
tion of complex liabilities such as insurance contracts containing embedded options typically
require numerical approaches. This is the main source of complexity associated with this
task, since the valuation needs to be carried out for each realization of the process Y at time
7, i.e. we face a nested valuation problem.

Formally, the available capital is derived as a (risk-neutral) conditional expected value
of discounted cash flows X;, where for simplicity and to be closer to modeling practice, we
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assume that cash flows only occur at discrete times ¢t = 1,2,..., T and that 7 € {1,2,...,T}:

C, =EY

(Ys)o<s<T] : (2)

Note that within this formulation, interim asset and liability cash flows in [0, 7] may be
aggregated in the o(Y;,0 < s < 7)-measurable position X,. Moreover, in contrast to e.g.
Gordy and Juneja (2010), we consider aggregate asset and liability cash flows at times
k > 7 rather than cash flows corresponding to individual asset and liability positions. Aside
from notational simplicity, the reason for this formulation is that we particularly focus on
situations where an independent evaluation of many different positions is not advisable or
feasible as it is for instance the case within economic capital modeling in life insurance (Bauer
et al., 2012b).

In addition to current interest rates, security prices, etc., the value of the asset and lia-
bility positions may also depend on path-dependent quantities. For instance, Asian options
depend on the average of a certain price index over a fixed time interval, lookback options
depend on the running maximum, and liability values in insurance with profit sharing mech-
anisms depend on entries in the insurer’s bookkeeping system. In what follows, we assume
that — if necessary — the state process Y is augmented so that it contains all quantities
relevant for the evaluation of the available capital and still satisfies the Markov property
(Whitt, 1986). Thus, we can write:

T

N,
> N,

k=1

C, =E° Y,

We refer to the state process Y as our model framework. Within this framework, the
asset-liability projection model of the company is given by cash flow projections of the asset-
liability positions, i.e. functionals z; that derive the cash flows X based on the current state
Ykil

N,

N,
Hence, each model within our model framework can be identified with an element in a suitable
function space, x = (z;, Zr41, ..., o) . More specifically, we can represent:

Cr (V7) = B [a; (V)| V7).

We now introduce the probability measure P via its Radon-Nikodym derivative:
P 9Q
o’ _
P [0Q '
o EF [ |F]
1Similarly to Section 8.1 in Glasserman (2004), without loss of generality, by possibly augmenting the

state space or by changing the numéraire process (see Section 5), we assume that the discount factor can be
expressed as a function of the state variables.
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Lemma 2.1. We have:
1. P(A)=P(A), Ac F, 0<t <.
2. E¥ [X| F,] = ER[X| F,] for every random variable X € F.

Lemma 2.1 implies that we have:

T
O (¥,) = SE[a ()| Y] = Lx(Y,), 3)
Jj=T
where the operator:
T ~
L:H =L R B Py,) - L*(R, B,Py,) (4)

j=r

is mapping a model to capital. We call L in (4) the valuation operator. For our applications
later in the text, it is important to note the following:

Lemma 2.2. L is a continuous linear operator.

Moreover, for our results on the optimality of basis functions, we require compactness of
the operator L. The following lemma provides a version of the well-known Hilbert-Schmidt

condition for L to be compact in terms of the transition densities (Breiman and Friedman,
1985):

Lemma 2.3. Assume there exists a joint density my, y,(y,v), j = 7,7 +1,...,T, for Y; and
Y;. Moreover:

/ / Ty, v, (Y]@) Ty, 1v; (2 y) dy do < oo,
Rd JR4

where Ty, |y, (y|r) and 7wy, y,(z|y) denote the transition density and the reverse transition
density, respectively. Then the operator L is compact.

The definition of L implies that a model can be identified with an element of the
Hilbert space H whereas (state-dependent) capital C; can be identified with an element
of L*(R% B,Py,). The task at hand is now to evaluate this element for a given model
X = (Z,,...,z7) and to then determine the capital requirement via a (monetary) risk mea-
sure p : L2(R4, B, Py, ) — R as p(Lx), although the model may change between applications
as the exposures may change (e.g. from one year to the next or when evaluating capital
allocations via the gradient of p (Bauer and Zanjani, 2016)).

One possibility to carry out this computational problem is to rely on nested simulations,
i.e. to simulate a large number of scenarios for Y, under P and then, for each of these
realizations, to determine the available capital using another simulation step under Q. The
resulting (empirical) distribution can then be employed to calculate risk measures (Lee, 1998;
Gordy and Juneja, 2010). However, this approach is computationally burdensome and, for
some relevant applications, may require a very large number of simulations to obtain results
in a reliable range (Bauer et al., 2012b). Hence, in the following, we develop an alternative
approach for such situations.
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2.2 Least-Squares Monte-Carlo (LSM) Algorithm

As indicated in the previous section, the task at hand is to determine the distribution of
C; given by Equation (3). Here, the conditional expectation causes the primary difficulty
for developing a suitable Monte Carlo technique. This is akin to the pricing of Bermu-
dan or American options, where “the conditional expectations involved in the iterations of
dynamic programming cause the main difficulty for the development of Monte-Carlo tech-
niques” (Clément et al., 2002). A solution to this problem was proposed by Carriere (1996),
Tsitsiklis and Van Roy (2001), and Longstaff and Schwartz (2001), who use least-squares
regression on a suitable finite set of functions in order to approximate the conditional expec-
tation. In what follows, we exploit this analogy by transferring their ideas to our problem.

As pointed out by Clément et al. (2002), their approach consists of two different types
of approximations. Proceeding analogously, as the first approximation, we replace the con-
ditional expectation, C., by a finite combination of linearly independent basis functions
€k(Y:r) e L? (Rd, B, ]P)YT>:

M
Crm CMD(Y,) = - ex(Y7). (5)
k=1

We then determine approximate P-realizations of C'. using Monte Carlo simulations. We
generate N independent paths (Yt(l))ogtgir’, (Y;(2))0§t§;p,..., (Y;(N))OQST, where we generate
the Markovian increments under the physical measure for ¢ € (0,7] and under the risk-
neutral measure for ¢ € (7,7T].2 Based on these paths, we calculate the realized cumulative

discounted cash flows: .
) _ (i) ~
VT(l)—ij(Yj >,1§2§N.
J=T
We use these realizations in order to determine the coefficients a@ = (a,...,ay) in the
approximation (5) by least-squares regression:

2

N M
d(N) = argminaeRM Z V:r(z) - Z ap - € (Y:r(l))
i=1 k=1

Replacing a by @), we obtain the second approximation:

M
Cr = COD(Y,) 7 CMN(Y) =36l - en(Yr), (6)
k=1
. A(M,N)
based on which we can then calculate p (Lx) =~ p(C7 ).

In case the distribution of Y., Py, is not directly accessible, we can calculate realizations
of C’ﬁM’N) resorting to the previously generated paths (Y;(l))ogtST, 1 =1,...,N, or, more

2Note that it is possible to allow for multiple inner simulations under the risk-neutral measure per outer
simulation under P as in the algorithm proposed by Broadie et al. (2015). However, as shown in their paper,
a single inner scenario as within our version will be the optimal choice when allocating a finite computational
budget. The intuition is that the inner noise diversifies in the regression approach whereas additional outer
scenarios add to the information regarding the relevant distribution.
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precisely, to the sub-paths for ¢ € [0, 7]. Based on these realizations, we can determine the
corresponding empirical distribution function and, consequently, an estimate for p(C’(M N))
For the analysis of potential errors when approximating the risk measure based on the
empirical distribution function, we refer to Weber (2007).

3 Analysis of the Algorithm

3.1 Convergence

The following proposition establishes convergence of the algorithm described in Section 2.2
when taking limits sequentially:

Proposition 3.1. C™ — ¢, in LR, B,Py.), M — oo, and CM™) — CM N — o,
P-almost surely. Furthermore, ZWN) = /N [(ﬁﬁM) —@M’N) — Normal (0,6M), where
M) s provided in Equation (23) in the Appendix.

We note that the proof of this convergence result is related to and simpler than the
corresponding result for the Bermudan option pricing algorithm in Clément et al. (2002) since
we do not have to take the recursive nature into account. The primary pomt of Proposition
3.1 is the convergence in probability — and, hence 1n distribution — of ) — C- implying
that the resulting distribution function of C’ presents a valid approxunatlon of the
distribution of C'. for large M and N. The question of whether p(C’T ’ )) presents a valid
approximation of p(C;) depends on the regularity of the risk measure. In general, we require
continuity in L?(R% B,Py.) as well as point-wise continuity with respect to almost sure
convergence (see Kaina and Riischendorf (2009) for a corresponding discussion in the context
of convex risk measures). In the special case of orthogonal basis functions, we are able to
present a more concrete result:

Corollary 3.1. If {ex, k =1,..., M} are orthonormal, then M) C., N—= oo, M —
oo in LY(R?, B, Py.). In particular, if p is a finite convex risk measure on L'(R%, B, Py. ), we
have p(CMN)Y = p(CL), N = 00, M — o0.

Thus, at least for certain classes of risk measures p, the algorithm produces a consistent
estimate, i.e. if NV and M are chosen large enough, p(C’ (MN )) presents a viable approximation.
In the next part, we make more precise what large enough means and, particularly, how large
N needs to be chosen relative to M.

3.2 Joint Convergence and Convergence Rate

The LSM algorithm approximates the capital level — which is given by the conditional ex-
pectation of the aggregated future cash flows V, = ZjT:l xj(Y;(l)) — by its linear projection
on the subspace spanned by the basis functions e™)(Y;) = (e1(Y5), ..., en(Y7)) :

E” [V|Y;] ~ e () 6™,
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Thus, the approximation takes the form of a series estimator for the conditional expectation.
General conditions for the joint convergence of such estimators are provided in Newey (1997).
Convergence of the risk measure then follows as in the previous subsection. We immediately
obtain:?

Proposition 3.2 (Newey (1997)). Assume Var(V;|Y;) is bounded and that for every M,
there is a non-singular constant matriz B such that for éM = Be™) we have:

e The smallest eigenvalue of E¥ [é(M)(YT) eM) (YT)’} is bounded away from zero uniformly
m M ; and

e there is a sequence of constants & (M) satisfying sup,cy €M) (y)|| < &(M) and M =
M(N) such that &(M)?> M/N — 0 as N — oo, where Y is the support of Y.

Moreover, assume there exist ¥ > 0 and apy € RM such that sup,ey, |Cr(y) — e (y) ay| =
O(M~¥) as M — .
Then:

- . 2
EF [(C — CﬁM’N)) } = O(M/N + M~2¥),
i.e. we have joint convergence in L?(R%, B, Py.).

In this result, we clearly see the influence of the two approximations: The functional
approximation is reflected in the second part of the expression for the convergence rate.
Here, it is worth noting that the speed 1 will depend on the choice of the basis functions,
emphasizing the importance of this aspect. The first part of the expression corresponds to
the regression approximation, and in line with the second part of Proposition 3.1 it goes to
zero linearly in N.

The result provides general conditions that can be checked for any selection of basis func-
tions, although ascertaining them for each underlying stochastic model may be cumbersome.
Newey also provides explicit conditions for the practically relevant case of power series. In
our notation, they read as follows:

Proposition 3.3 (Newey (1997)). Assume Var(V.|Y;) is bounded and that the basis func-
tions M) (Y,) consist of orthonormal polynomials, that Y is a Cartesian product of compact
connected intervals, and that a sub-vector of Y, has a density that is bounded away from zero.

Moreover, assume that C,(y) is continuously differentiable of order s.
Then, if M3/N — 0, we have:

i A 2 2s
EF [((JT—CﬁM’N)) } = O(M/N + M~ "/4),

i.e. we have joint convergence in L?(R%, B, Py.).

3Newey (1997) also provides conditions for uniform convergence and for asymptotic normality of series
estimators. We refer to his paper for details.
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Hence, for orthonormal polynomials, the smoothness of the conditional expectation is
important — which is not surprising given Jackson’s inequality. First-order differentiability
is required (s > 1), and if s = 1, the convergence of the functional approximation will
only be of order M~%/¢, where d is the dimension of the underlying model. Clearly, a more
customized choice of the basis functions may improve on this rate.

We note that although M /N enters the convergence rate, the general conditions require
&(M)2M/N — 0 in general and M3/N — 0 for orthonormal polynomials, effectively to
control for the influence of estimation errors in the empirical covariance matrix of the re-
gressors. Moreover, for common financial models the assumption of a bounded conditional
variance or bounded support of the stochastic variables are not satisfied. Benedetti (2017)
shows that if the distribution of the state process is known, convergence can still be ensured
at a rate of M?log{M}/N — 0 under more modest — and in the financial context more
appropriate — conditions. We refers to his paper for details.

Regarding the properties of the estimator beyond convergence, much rides on the first
(functional) approximation that we discuss in more detail in the following Section 4. With
regards to the second approximation, it is well-known that as the OLS estimate, éﬁM’N) is
unbiased — though not necessarily efficient — for C™ under mild conditions (see e.g. Sec.
6 in Amemiya (1985)). However, this clearly does not imply that p(aﬁM’N)) is unbiased

for p(@ﬁM)). Proceeding similarly to Gordy and Juneja (2010) for the nested simulations
estimator, in the next subsection we analyze this relationship in more detail for VaR.

3.3 LSM Estimate for Value-at-Risk

VaR is an important special case, since it is the risk measure applied in regulatory frame-
works, particularly Solvency II. VaR does not fall in the class of convex risk measures so that
Corollary 3.1 does not apply. However, convergence immediately follows from Propositions
3.1-3.3:

Corollary 3.2. We have:
Fronm(l) = P(CMN < 1) » P(C, < 1) = Fo. (1), N = 00, M — 00, | €R,

and:
F(j_w(lMN)(a) — Fgl(a), N = 00, M — oo,

for all continuity points a € (0,1) of FC_TI. Moreover, under the conditions of Propositions
3.2 and 3.3, we have joint convergence.

Gordy and Juneja (2010) show that the nested simulations estimator for VaR carries a
positive bias in the order of the number of simulations in the inner step. They derive their
results by considering the joint density of the exact distribution of the capital at time 7
and the error when relying on a finite number of inner simulations scaled by the square-root
of the number of inner simulations. The following proposition establishes that their results
carry over to our setting in view of the second approximation:
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Proposition 3.4 (Gordy and Juneja (2010)). Let gn(-,-) denote the joint probability density

function of (—éﬁM), ZWN)) | and assume that it satisfies the reqularity conditions from Gordy
and Juneja (2010) collected in the Appendiz. Then:

ta
N f(VaRa [—(%M)D

E [Vcﬁza [—@M’N)H — VaR, [—@M)} n +oy(N7Y),

IN

where Val, [—@ﬁM’N)] denotes the [(1 — a)N| order statistic of aﬁM’N)(YT(i)), 1 <4

: _ _14d|f A(M) _
N (the sample quantile), 0, = T m [f(,u)]E [a%(m| - Cr _MHMVaRa[—&Mq’ O-Z(M =

E [(Z(N))2 ]YT] , and f is the marginal density of —CM.

The key point of the proposition is that — similarly to the nested simulations estimator
— the LSM estimator for VaR is biased. In particular, for large losses or a large value of
«, the derivative of the density in the tail is negative resulting in a positive bias. That is,
ceteris paribus, on average the LSM estimator will err on the “conservative” side (see also
Bauer et al. (2012b)). However, note that this statement of course ignores the variance due
to estimating the risk measure from the finite sample, which trumps the inaccuracy due to
bias — and unlike the nested simulations setting, here the two sources are governed by the
same parameter N. Indeed, as is clear from Proposition 3.1, the convergence of the variance
is of order N and thus dominates the mean squared error for relatively large values of N (the
bias will enter as O(N~2)). Moreover, of course the result only pertains to the regression
approximation but not the approximation of the capital variable via the linear combination
of basis functions, which is at the core of the proposed algorithm.

4 Choice of Basis Functions

As demonstrated in Section 3.1, any set of independent functions will lead the LSM algorithm
to converge. In fact, for the LSM method for pricing non-European derivatives, frequent
choices of basis functions include Hermite polynomials, Legendre polynomials, Chebyshev
polynomials, Fourier series, and even simple polynomials. While the choice is important
for the pricing approximation (Glasserman, 2004, Sec. 8.6), several authors conclude based
on numerical tests that the approach appears robust for typical problems when including a
sufficiently large number of terms (see e.g. Moreno and Navas (2003) and also the original
paper by Longstaff and Schwartz (2001)). A key difference between the LSM pricing method
and the approach here, however, is that it is necessary to approximate the distribution over
its entire domain rather than the expected value only. Furthermore, the state space for
estimating a company’s capital can be high-dimensional and considerably more complex than
that of a derivative security. Therefore, the choice of basis functions is not only potentially
more complex but also more crucial in the present context.

4.1 Optimal Basis Functions for a Model Framework

As illustrated in Section 2.1, we can identify capital — as a function of the state vector at the
risk horizon Y, — for a cash flow model x within a certain model framework Y with the output
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of the linear operator L applied to x: C.(Y;) = Lx(Y;) (Eq. (3)). As discussed in Section
3.2, the LSM algorithm, in turn, approximates C, by its linear projection on the subspace
spanned by the basis functions e( )(Y;), PC.(Y;), where P is the projection operator.

For simplicity, in what follows, we assume that the basis functions are orthonormal in
L*(R, B,Py.). Then we can represent P as:

M

P- — <-, ek(K->>L2(]PYT) ek-
k=1

Therefore, the LSM approximation can be represented via the finite rank operator Ly = P L,
where we have:

M
k=1
M T ~ M T
= D B |en(Yr) QBT [m;(V))IYH] |en = 3 BT |enl(Yr) 3 ai(Y5) | ek
k=1 J=T k=1 j=r
N——
=V,
M ~
= > B [en(Yn) Vi ex, (7)
N—_———™—™—
k=1

where the fourth equality follows by the tower property of conditional expectations.

It is important to note that under this representation, ignoring the uncertainty arising
from the regression estimate, the operator Ly gives the LSM approximation for each model
x within the model framework. That is, the choice of the basis function precedes fixing a
particular cash flow model (payoff). Thus, we can define optimal basis functions as a system
that minimizes the distance between L and L, so that the approximation is optimal with
regards to all possible cash flow models within the framework:

Definition 4.1. We call the set of basis functions {e}, €5, ...,e%+ optimal in L*(RY, B, Py, )
if:

{GL 637 . eM} - arglnf{el,eg, ,eM}”L LFH - arglnf{el €2,..,€0M } HSI\TP HLX - LFXH

This notion of optimality has various advantages in the context of calculating risk capital.
Unlike pricing a specific derivative security with a well-determined payoff, capital may need
to be calculated for subportfolios or only certain lines of business for the purpose of capital
allocation (Bauer and Zanjani, 2016). Moreover, a company’s portfolio will change from
one calculation date to the next, so that the relevant cash flow model is in flux. The
underlying model framework, on the other hand, is usually common to all subportfolios
since the purpose of a capital framework is exactly the enterprise-wide determination of
diversification opportunities and systematic risk factors. Also, it is typically not frequently
revised. Hence, it is expedient here to connect the optimality of basis functions to the
framework rather than a particular model (payoff).
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4.2 Optimal Basis Functions for a Compact Valuation Operator

In order to derive optimal basis functions, it is sufficient to determine the finite-rank opera-
tor Lr that presents the best approximation to the infinite-dimensional operator L. If L is a
compact operator, this approximation is immediately given by the singular value decompo-
sition (SVD) of L (for convenience, details on the SVD of a compact operator are collected
in the Appendix). More precisely, we can then represent L : H — L*(R?, B, Py.) as:

Lx = Zwk (X, Sk) Pk, (8)

k=1

where {wy} with w; > wy > ... are the singular values of L, {sz} are the right singular
functions of L, and {¢} are the left singular functions of L — which are exactly the eigen-
functions of L L*. The following proposition demonstrates that the optimal basis functions
are given by the left singular functions of L.

Proposition 4.1. Assume the operator L is compact. Then for each M, the left singular
functions of L {1, pa,..., 00} € L2(R, B, Py.) are optimal basis functions in the sense of
Definition 4.1. For a fized cash flow model, we obtain oy, = wy (X, Sk).

Our finding that the left singular functions provide an optimal approximation is related
to familiar results in finite dimensions. In particular, our proof is similar to the Eckart-
Young-Mirsky Theorem on low-rank approximations of an arbitrary matrix. A sufficient
condition for the compactness of the operator L is provided in Lemma 2.3.

To appraise the impact of the two approximations simultaneously, we can analyze the joint
convergence properties in M and N for the case of optimal basis functions. Here, in general,
we have to check the conditions from Newey’s convergence result (Prop. 3.2). We observe
that the convergence rate associated with the first (functional) approximation depends on
the parameter 1, which in the present context derives from the speed of convergence of the
singular value decomposition:

O(M™*) = infsup |C,(y) — e (y) an| < sup|Lx(y) — Lrx(y)|

am yey yey
= sup W, (X, sk) wr(y)| - (9)
veY k=M1

In particular, we are able to provide an explicit result in the case of bounded singular
functions.

Proposition 4.2. Assume Var(V,|Y;) is bounded and that the singular functions, {or}5,,
are uniformly bounded on the support of Y. Then, if M?/N — 0, we have:

P ~(M,N) 2 _ 2
B | (¢, - com)’| = oy + i),

i.e. we have joint convergence in L*(R%, B, Py.).
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Comparing this convergence rate for singular functions to the general case from Propo-
sition 3.2 and the orthonormal polynomial case from Proposition 3.3, we notice that the
second term associated with the first (functional) approximation now is directly linked to
the decay of the singular values. For integral operators, this rate depends on the smoothness
of the kernel k(z,y) (see Birman and Solomyak (1977) for a survey on the convergence of
singular values of integral operators). In any case, Equation (9) that directly enters Newey’s
convergence result illustrates the intuition behind the optimality criterion: To choose a ba-
sis function that minimizes the distance between the operators for all x, although in the
Definition we consider the L?-norm rather than the supremum.

The derivation of the SVD of the valuation operator of course depends on the specific
model framework. In some cases, it is possible to carry out the calculations and derive
analytical expressions for the singular values. In the next subsection, we determine the SVD
— and, thus, optimal basis functions — in the practically highly relevant case of Gaussian
transition densities. Here, the optimal basis functions correspond to Hermite polynomials of
suitably transformed state variables and the singular values decay exponentially for d = 1
(Proposition 4.3), demonstrating the merit of this choice.

4.3 Optimal Basis Functions for Gaussian Transition Densities

In what follows, we consider a single cash flow at time T only (generalizations follow anal-
ogously), and we assume that (Y7,Yr) are jointly Gaussian distributed. We denote the
P-distribution of this random vector via:

b ~>[Gr) (7 s (10)

where p, pr, 3;, and X are the mean vectors and variance-covariance matrices of Y, and
Yr, respectively, and I is the corresponding (auto) covariance matrix — which we assume to
be non-singular.

Denoting by ¢g(z; u, ) the normal probability density function at = with mean vector
p and covariance matrix X, the marginal densities of Y, and Y7 are 7y (x) = g(z; pr, 2r)

and my,.(y) = g(y; ur, X7), respectively. Mapping these assumption to the previous notation
yields x = xp, L: H = L*(RY, B, 7y,.) — L*(RY, B, 7y, ), and:

CoY,) = L) = [ orla) mvoe (01Y:) oy

where 7y, |y, (y|z) denotes the transition density. In order to obtain optimal basis functions,
the objective is to derive the SVD of L.
Lemma 4.1. We have for the conditional distributions:
Yr|Y, =2~ N (,uT|7-(.CL’), ET‘T) and Y, |Yr =y~ N (MT\T(Z/), ZT|T)
with transition density and reverse transition density:
Ty, W) = 9(y; prir (1), X)) and my, v (wly) = g(@; prr(y), Srjr),

respectively, where pir(x) = pr + 'S e — pr), Sppr = Xp — US0T, prr(y) = pr +
FZ}l(y — pr), and Eop = X, — FZ}T’. Moreover, L is compact in this setting.
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Per Proposition 4.1, the optimal basis functions are given by the left singular functions,
which are in turn the eigenfunctions of L L*. We obtain:

Lemma 4.2. The operator LL* and L*L are integral operators:

LL*f() = | Ka(,y)f(y)dy and L'Lf(-) = | Kp(-z) f(z)dz,

R R4
where the kernels are given by Gaussian densities:
Ka(z,y) = 9(y; pa(x), Ea) and Kp(y,z) = g(z; ps(y), Xp)
with
o ua(r)=p, +Alx — py), A=TSHTSS and X4 = 5, — AX, A

e up(y) = pr +Bly —pr), B=T'S7'TS and X5 = Xp — BB

We denote by Ex,[-|x] and Ex,[-ly] the expectation operators under the Gaussian densities
Ka(z,-) and Kg(y,-), respectively.

The problem of finding the singular values and the left singular functions therefore
amounts to solving the eigen-equations:

Ex, [f(V)]z] = w* f(2).

We exploit analogies to the eigenvalue problem of the Markov operator of a first-order multi-
variate normal autoregressive (MAR(1)) process studied in Khare and Zhou (2009) to obtain
the following:

Lemma 4.3. Denote by PAP' the eigenvalue decomposition of:
2;1/2 AE}_/Q _ 2;1/2 FE;Ir/z;l/?)

where PP' = I and A is the diagonal matriz whose entries are the eigenvalues \y > Xy >
o>\ of A. Fory € R%, define the transformation:

y) = P22y — ). (11)
Then for Y ~ Ka(z,-), we have:
Ex, [7(Y)|z] = A" (2).

Moreover, Varg, [27(Y)|z] =1 — A2, B, [27(Y;)] =0, and Vary, [27(Y;)] =1
Similarly, denote the diagonalization Z;l/QBElT/Q = QAQ', where Q'Q = I and define
the transformation:
2 x) = QS (@ — ). (12)
Then for X ~ Kg(y,-), we have:

Ex, [29(X)ly] = A2%(y),
Varg, [29(X)ly] =1 = A?, Bq, [2%(Y7)] =0, and Vary, [29(Y7)] = 1.
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Therefore, for a random vector Y|z in R? that is distributed according to K4(z,-), the
components 27 (Y) of 2P (Y') are independently distributed with 27 (Y) ~ N(\; zF'(z), 1=\,
where z/(x) is the i-th component of z”(z). Since eigenfunctions of standard Gaussian

distributed random variables are given by Hermite polynomials, the SVD follows immediately
from Lemma 4.3:

Proposition 4.3. Denote the Hermite polynomial of degree j by h;(z) (Kollo and Rosen,
2006):

ho(z) = 1, hi(z) = x, hy(z) = % (x hj_1(z) — /7 — 1hj_2(x)) . =23,

The singular values of L in the current (Gaussian) setting are given by:
wm =T N2 = (ky, . k) € N, (13)

where N is the set of d-dimensional non-negative integers, and the corresponding right and
left singular functions are:

sm(®) = W i (2 (2)) and o(y) = T i, (2F (1)),
respectively.
Combining the insights from Proposition 4.1 and Proposition 4.3, we immediately obtain:
Corollary 4.1. Let (my)ren be a reordering of {m} = {(ki, ..., ka) € N&} such that:
Wiy = Wiy = Wiy = - .

Then, in the current setting, optimal choices for the basis functions for the LSM algorithm
in the sense of Definition 4.1 are given by:

Ok = Pm,, k=1,2,3,...

In the univariate case (d = 1), A = A is the square of the correlation coefficient between
Y, and Yr — so that the singular values are simply powers of this correlation, decaying
exponentially. Thus, the SVD takes the form (Abbe and Zheng, 2012):

Lx(Y;)

- - Yr — Y;' - M7
3 (Cor(¥;, ¥e))H! <xThk (T—“T)> - ( L ) .
e ZT Ty, ZT

1 T

In particular, optimal basis functions are given by Hermite polynomials of the normalized
Markov state — although other choices of polynomial bases will generate the same span so
that the results will coincide.

In the general multivariate case, it is clear from Proposition 4.3 that the singular values
of L are directly related to eigenvalues of the matrix A (or, equivalently, B), and there are
(d;l_l;“l) vectors of indices m such that ) . k; = [ in Equation (13) (stars and bars problem).
The order of these singular values will determine the order of the singular functions in the
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SVD (8). In particular, after ¢;(x) = 1 with coefficient equaling (x7,1) = E[z7|, the first
nontrivial basis function is given by the singular function associated with the largest singular
value — which according to (11) is a component of the linearly transformed normalized state
vector. The subsequent basis functions depend on the relative magnitudes of the different
singular values. For instance, while for 1 > \; > )\, clearly v/A; > \/)\_12 = A1 and similarly
for Ao, it is not clear whether A\; > /Ay or vice versa — and this order will determine which
combination of basis functions is optimal.

Thus, in the multi-dimensional case — and particularly in high-dimensional settings that
are relevant for practical applications — is where the analysis here provides immediate guid-
ance. Even if a user chooses the same function class (Hermite polynomials) or function
classes with the same span (e.g., other polynomial families), it is unlikely that a naive choice
will pick the suitable combinations — and this choice becomes less trivial and more material
as the number of dimensions increases.

From Proposition 3.1, we obtain sequential convergence. Joint convergence for (a class
of) models x can be established by following Newey’s approach from Propositions 3.2/3.3, or
by relying on the results from Benedetti (2017) in case the parameters are known. While the
Hermite polynomials do not satisfy the uniformly boundedness assumptions from Proposition
4.2, from Proposition 3.2 and the discussion following Proposition 4.2, it is clear that the
convergence rate of the functional approximation is linked to the decay of the singular values
(O(w?,) in Prop. 4.2). In the current setting we have (Prop. 4.3):

d d
Wiy = WE,LM = H)\f < H max {\; ¥ = max {\;}2=%
i=1 i=1

1<i<d 1<i<d

where maxj<;<4{\i} < 1 and there are (dg_lﬁ) vectors m such that >, k; = [. Thus, as in
Proposition 3.3, the convergence is slowing down as the dimension d of the state process
increases, although the relationship here is exponential rather than polynomial.

In models with non-Gaussian transitions, while an analytical derivation may not be pos-
sible, we can rely on numerical methods to determine approximations of the optimal basis
functions. For instance, Huang (2012) explains how to solve the associated integral equation
by discretization methods, which allows to determine the singular functions numerically, and
Serdyukov et al. (2014) apply the truncated SVD to solve inverse problems numerically. Al-
ternatively, one can approximate an arbitrary distribution by a Gaussian distributions using
the first two (possible sample) moments to obtain approximately optimal basis functions.
Using a Gaussian approximation is common in statistical learning applications, for instance
in Discriminant Analysis (Hastie et al., 2009).

5 Application

To illustrate the LSM algorithm and its properties, we consider an example from life insur-
ance: a Guaranteed Minimum Income Benefit (GMIB) within a Variable Annuity contract.
As indicated in the Introduction, the LSM algorithm is particularly relevant in insurance,
especially in light of the new Solvency II regulation that came into effect in 2016. Here, the
so-called Solvency Capital Requirement takes the form of a 99.5% VaR at the risk horizon
T=1.
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Within a Variable Annuity (VA) plus GMIB contract, at maturity 7" the policyholder has
the right to choose between a lump sum payment amounting to the current account value or
a guaranteed annuity payment b determined by a guaranteed rate applied to a guaranteed
amount. GMIBs are popular riders for VA contracts: Between 2011 and 2013, roughly 15%
of the more than $150 billion worth of Variable Annuities sold in the US contained a GMIB.*
Importantly, GMIBs are subject to a variety of risk factors, including fund (investment) risk,
mortality risk, and — as long term contracts — interest rate risk. Consequently, we consider
its risk and valuation in a multivariate Markov setting for these three risk factors.

5.1 Model and Payoff of the GMIB

We consider a large portfolio of GMIBs with policyholder age x, policy maturity 7, and a
fixed guaranteed amount — so that the guaranteed annuity payment b is fixed at time zero.
The payoff of the VA plus GMIB at T in case of survival is given by:

max {St, ba,i7(T)}, (14)

where St is the underlying account value which evolves according to a reference asset net
various fees (which we ignore for simplicity) and a,,7(7") denotes the time T value of an
immediate annuity on an (z + T')-year old policyholder of $1 annually.

We consider a three-dimensional state process Y; governing financial and biometric risks:

}/t — (Qt; T, N$+t)/7

where ¢; denotes the log-price of the risky asset at time ¢, r; is the short rate, and p,, is the
force of mortality of an (z + t)-aged person at time t. We assume Y; satisfies the following
stochastic differential equations under P:

1
dg, = (m — §U§> dt +ogdW, (15)
dry = a(y —ry) dt + o, dW/, (16)
Apgit = Kyt dt + P AW/, (17)

where m is the instantaneous rate of return of the risky asset and og is the asset volatility;
«, v, and o, are the speed of mean reversion, the mean reversion level, and the interest
rate volatility in the Vasicek (1977) interest rate model, respectively;  is an instantaneous
rate of increment of mortality (Gompertz exponent) and v is the volatility of mortality;
and W2, W[, and W/}' are standard Brownian motions under P with dW;? dW] = pi, dt,
dW2 dW} = pizdt, and dW dW/}' = pa3dt. Note that the solutions to the above stochastic
differential equations ensure that (Y, Yr) is Gaussian, so that we can derive the optimal
basis function using the approach in Section 4.3.
The dynamics of Y; under the risk-neutral measure QQ are given by:

1 ~
dg; = (rt - 50%) dt + og thS,

dry = a5 — 1) dt 4+ o, AW,
dﬂ“a:—f—t = Kllg+t dt + ¢ thM’

4Source: Fact Sheets by the Life Insurance and Market Research Association (LIMRA).
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where Wts , W[, and Wt“ are standard Brownian motions under Q with the same correlation
coefficients. Here, for simplicity, we assume that there is no risk premium for mortality risk
and we assume a constant risk premium A for interest rate risk, resulting in ¥ = v — Ao, /av.
Hence, the time-t value of the VA plus GMIB contract is:

V(t) = EQ [e* S rsttersds mas L7 bay (T} |Yt] . (18)

Since it is not possible to obtain an analytical expression for the GMIB, particularly
when considering additional features such as step ups or ratchets, it is necessary to rely on
numerical methods for valuation and estimating risk capital. To directly apply our LSM
framework, we adjust the presentation by changing the numéraire to a pure endowment
(survival benefit) with maturity 7" and maturity value one. The price of the VA plus GMIB
at time ¢ is then:

V(t) = 1-1Eyp e BV [max {e™, bag,r(T)} Y], (19)

where 7 <t < T, r_4F,; is the price of the pure endowment contract at time ¢, and Qg is
the risk-neutral measure using the pure endowment contract as the numéraire.
Under our assumption, we obtain:

riEp(Y)) = EC [e*ft”wmdsm — A(t, T) exp [~ B, (t, T)r, — Bu(t, T)ptuss]

since (r¢) and () are affine with:

1— —a(T—t) k(T—t) _ 1
B(tT) = —¢ " B@#tT)=" "

Y

Q

K

2 1 — —2a(T—t)
(% (- s 1227)
(0%

2av
€2H(T7t) -1
2K )

9 . 1 — —(a—kr)(T—1)
+ p230w(BM(t,T)—T%—t—I—BT(t,T)— ¢ >}}

and A(t,T) = exp{y(BT(t,T)—T—i-t)—i—

N | —

¢2
5 (T —t—2B,(t,T) +

ar a— K

Thus, applying [t0’s formula, the dynamics of the pure endowment price are:
dr 1By = 1 1By [(rt ¥ flosd)dt — 0, B, (. T)AW! — ¥B,(t, T)th“] ,

and from Brigo and Mercurio (2006), the new dynamics of Y¥; under Qg for 7 <t < T
become:

1
dg; = (rt — 50?9 — 12050, B, (t,T) — p13os¢B,(t, T)) dt + USde, (20)

dry, = (a("y — 1) — 2B (t,T) — pao, B¢, T)) dt + o,.dZ}, (21)
d,uac—l—t = (’f,ux-l—t - p230-r¢B7‘(t7 T) - ¢23u(t7 T)) dt + 77Z) de: (22)
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where Z°, 7", and Z!' are standard Brownian motions under Qg with dZ°dZ" = py» dt,
dZigdZ# = P13 dt, and dZ:dZtM = P23 dt.

For the calculation of the risk capital for the VA plus GMIB contract, we ignore un-
systematic mortality risk arising from finite samples and stochastic investments, and we
estimate the risk measure p(V(7,Y;)) via the LSM algorithm. In particular, the cash flow
functional in the current setting is x = xp with:

xp(Yr) = =V(T) = — max{e’T, bZkEm+T(YT)}
k=1

=az47(T)

and
CT = LX(Y;') = T—TEx-‘rT(YT') EQE [xT(YT)ly;-] .

To apply our results on optimal basis functions, we require the joint distribution of Y
and Yr:

Lemma 5.1. From (15)—(17) and (20)—(22), the joint (unconditional) distribution of Y.

and Yr under P is:
Y. fhr ¥, T
b)) (7 s)]

where we refer to the proof in the Appendix for explicit expressions of ., pur, X, etc. in
terms of the parameters.

Thus we can apply the results from Proposition 4.3 to derive optimal basis functions.
More precisely, for any non negative integer vector [ = (I1,ly,13), wy = A2 S is a squared
singular value of L, and the corresponding left singular functions is:

() = hu, (21 (2))luy (2 () huy (25 (2)).

Thus, in order to find the set of optimal basis functions for the LSM algorithm consisting
of M functions, we need to calculate wy,, for m = (m4, my, m3) such that |m| < M, order
them, and then determine the associated functions.

5.2 Numerical Results

We set the model parameters using representative values. The initial price of the risky asset
is one hundred — so ¢y = 4.605 — and for the risky asset parameters we assume m = 5%
(instantaneous rate of return) and og = 18% (asset volatility). The initial interest rate is
assumed to be rg = 2.5%, a = 25% (speed of mean reversion), v = 2% (mean reversion level),
o, = 1% (interest rate volatility), and A\ = 2% (market price of risk). For the mortality rate,
we set x = 55 (age of the policyholder), pss = 1% (initial value of mortality), k = 7%
(instantaneous rate of increment), and ¢ = 0.12% (mortality volatility). For correlations,
we assume p1s = —30% (correlation between asset and interest rate), p;3 = 6% (correlation
between asset and mortality rate), and py3 = —4% (correlation between interest rate and
mortality rate). For the insurance contract, we let the maturity 7' = 15 and we set:

_ (14+mg)T _ (14+mg)" (1 Ex(Yo))
b = SO X 9 /a;+T = SO X 9 T 0 /(ZzO:l T+kEa:(Y0))’
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where we assume a guaranteed rate of return my = 2% and @, is the annuity value based on
forward mortality rates (Bauer et al., 2012a). This implies a probability that Sp > ba, (T
of approximately 40%. Finally, we set the risk horizon 7 = 1 in line with the Solvency II
regulation.

With the above parameters, the eigenvalues of A in Lemma 4.3 are A\; = 0.14898, Ay =
0.06712, and A3 = 0.00035. The first singular value of the valuation operator in Proposition
4.3 is one and its corresponding left singular function is ¢ (z) = 1. The second singular value
is v/A; and the corresponding left singular function is po(z) = 2{(x). The next three singular

values are given by /Ay, A1, and /A1 )\, and the corresponding left singular functions are

p3(z) = 28 (x), pa(x) = \/LE ((zf(yc))2 - 1>, and ¢5(z) = 27 (x)zl(x), respectively. In

contrast, a naive choice of five monomials may result in the sequence (1, q,, 7, figir,q>) OT
another arbitrary arrangement.

Functional approximation.

We implement the LSM approximation to the capital variable and vary the number of basis
functions. In Figure 1, we provide an empirical density based on N = 3,000,000 and
approximate realizations calculated via the LSM algorithm for different numbers of basis
functions M.5 Here we rely on the optimal basis functions from above. As is evident from
the figure, a small number of basis function does not produce satisfactory results. However,
the approximation becomes closer to the “exact” density as M increases.

Estimated Density under Different Number of Basis Functions, N=3,000,000
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Figure 1: Empirical densities of V(1) based on N = 3,000,000 Monte Carlo realizations;
“exact” and using the LSM algorithm with M singular functions in the approximation.

5Since it is impossible to obtain the exact loss distribution at the risk horizon, we consider the estimated
loss distribution obtained from the LSM algorithm with M = 37 monomials and N = 40 x 10° simulations
as “exact.”
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N =100, 000 N = 3,000,000
Div. Singular Monomials Singular Monomials
KS 252x107% 2.86x 1072 2.41 x 1072 2.77 x 1072
M=4 KL 217x107* 232x1074 213 x 107* 228 x 1074
JS 7.43 x 1073 7.68 x 1073 7.36 x 1073 7.62 x 1073
KS 791 x107% 9.60x 1073 2.24 x 1073 5.79 x 1073
M=6 KL 109x10® 493x107° 453 x107% 4.31x107°
JS 1.62 x 10™* 3.52 x 1073 1.06 x 10™* 3.29 x 1073
KS 8.28x 1072 826 x 1073 1.49 x 10~* 1.53 x 1073
M=12 KL 143x10™® 155x107° 6.02 x 1077 1.74 x 107
JS 1.84 x 10™* 1.93 x 1073 3.82x107* 6.58 x 1074

Table 1: Statistical divergence measures between the empirical density function based on
the “exact” realizations and the LSM approximation using different basis functions; mean
of 300 runs with N = 3,000,000 sample paths each.

To assess the performance of optimal basis functions relative to naive choices, in Table
1 we report statistical differences to the “exact” distribution according to various statistical
divergence measures for singular functions and simple monomials for different numbers of
simulations N and basis functions M. More precisely, the set of monomial basis functions
when M = 6 is (1,q,, 77, flasr, ¢, 72), and for M = 12 we include all second-order terms
and (¢2,73). For each combination, the table reports three common statistical divergence
measures: the Kolmogorov-Smirnov statistic (KS), the Kullback-Leibler divergence (KL),
and the Jensen-Shannon divergence (JS). We report the mean of three-hundred runs.

There are two general observations. First, increasing the number of basis functions M
yields closer approximations of the “true” distribution. This again shows that in order
to obtain a close approximation, a sufficient number of basis functions is necessary. One
exception to this observation is the transition from M = 6 to M = 12 singular functions for
N = 100,000 sample paths, where the approximation worsens. The reason is the interplay
between the number of basis functions M and samples N that is emphasized in Section 3.2:
The convergence rate in Proposition 3.3 is a function of M and N, and increasing M while
keeping N at the same level, although yielding a closer functional approximation (second
term), adversely affects the regression approximation. For the monomials, on the other hand,
adding terms always decreases the divergence in Table 1, so that generally both aspects in
the convergence rate are at work, with either of them dominating in some cases. We will
illuminate this interplay in more detail below in the context of estimating risk measures.

The second observation is that the singular functions significantly outperform the mono-
mials, particularly for the larger number of sample paths (N = 3,000, 000), with a relative
difference up to an order of magnitude for the KL divergence. This result documents the
importance of choosing appropriate basis functions, and the virtue of singular functions as
the tangible and expedient choice. This insight is even more relevant when considering that
different combinations of monomials are possible — and indeed the choice in Table 1 turns
out to be favorable. To illustrate, in Table 2 we present statistical divergences as well as the
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KS KL JS VaR99,5%
Singular 216 x 1073 4.29 x 107® 1.04 x 10=>  139.08
Comb. 1 (¢2, r?) 5.08 x 1073 4.21 x 107° 3.25 x 10=*  140.09
Comb. 2 (¢2, M§+T) 8.94 x 1073 2.72x 107 2.61 x 1072  140.56
Comb. 3 (¢2, ¢,7+) 342 x 1073 296 x 107° 2.73 x 1072 139.82
Comb. 4 (¢, qrpizsr) 3.20 x 1073 3.22x107° 2.84 x10™% 139.10
Comb. 5 (¢, rrplzsr) 505 x 1073 429 x 107° 3.28 x 1073 140.10
Comb. 6 (r2, pu2,,) 248 x 1072 211 x 107 733 x 1073 134.68
Comb. 7 (2, ¢,7,) 250 x 1072 222 x107* 7.52x 107  134.56
Comb. 8 (72, ¢y pigir) 3.72x 1072 2.09x107* 7.29 x 1072 132.34
Comb. 9 (72, rypigsr) 288 x 1072 227 x107* 7.60 x 10™*  133.80
Comb. 10 (;@H, q-rr) 217 x 1072 2.07x107* 7.25x107® 135.26
Comb. 11 (42, ., qrfbatr) 3.35 x 1072 1.95 x 107* 7.05x 1072  133.07
Comb. 12 (2, ., T'rflzsr) 247 x 1072 211 x107* 7.33x 1072  134.59
Comb. 13 (¢;77, Grflzsr) 3.37 x 1072 2.05 x 107* 7.23x10™*  132.99
Comb. 14 (q;rr, Trflzir) 250 x 1072 223 x 107* 754 x 107 134.44
Comb. 15 (qrftgir, Trfizsr) 3.65x 1072 2.08 x 107 7.28 x 1072 132.40

Table 2: Statistical divergence measures between the empirical density function based on the
“exact” realizations and the LSM approximation using different basis functions with M = 6,
and VaR at 99.5%; mean of 300 runs with N = 3,000,000 sample paths each. C1 to C15
are based on simple monomials.

99.5% VaR for M = 6 singular functions as well as for 15 different possible combinations
of six monomials, where in addition to the first-order terms for each of the state variables
we include all possible combinations of two second-order terms. We again report the mean
of three-hundred runs based on N = 3,000,000 samples,® whereas Figure 2 provides corre-
sponding box-and-whisker plots of the outcomes.”

Again, we find that singular functions — as the optimal choice — significantly outperform
all combinations of monomials, and the differences can be drastic. Specifically, while combi-
nations 1 through 5 come somewhat close to the results from singular functions at least in
view of the KS metric and the estimated VaR, combinations 6 through 15 perform an order of
magnitude worse. It is interesting to note that the component missing in combinations 6-15
is the square of the log-price of the risky asset ¢,. This illustrates the relevance of non-linear
effects in ¢, with respect to the value of the liability. The box-and-whisker plots in Figure 2
reveal that across the entire domain of the distribution (which is relevant to the KL and JS
divergences), the singular functions perform considerably better than any of the monomial
combinations. This is still the case for the KS divergence, although here differences are less

6To not bias the results, we use different random numbers for Tables 1 and 2, so that sampling error
explains small differences in the tables as well as some of the observations within each table (e.g., the order
of the KS results for M = 12 in Table 1).

"Here and in what follows, the box presents the area between the first and third quartile, with the
inner line placed at the median; the whisker line spans samples that are located closer than 150% of the
interquartile range to the upper and lower quartiles, respectively (Tukey box-and-whisker plot).
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Box—and-Whisker plot for KS statistics Box-and-Whisker plot for KL divergences
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Figure 2: Box-and-whisker plots for various statistical divergence measures and 99.5% VaR
calculated using the LSM algorithm with different basis functions with M = 6; based on 300
runs with N = 3,000,000 sample paths each. C1 to C15 are based on simple monomials.
Cf. Table 2
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b=0.95b b= 1.05b

Div. Singular Monomials Singular Monomials
KS 2.71 x 1072 2.98 x 1072 2.16 x 1072 2.59 x 1072
KL 2.25 x 107* 2.39 x 10~* 1.98 x 107* 2.14 x 107*

M=4 JS 7.58 x 1073 7.80 x 1073 7.10 x 1073 7.38 x 1073
Q1var 132.17 131.66 137.02 136.22
Q3.var 132.31 131.80 137.18 136.36
KS 248 x 1072 5.90 x 1073 1.99 x 107% 4.94 x 1073
KL 461 x 1078 4.27 x 107° 443 x 1076 4.31 x 107°

M=6 JS 1.07 x 1073 3.27 x 1073 1.05 x 1072 3.29 x 1073
Q1vaR 137.09 138.10 140.99 141.99
Q3.var 137.34 138.35 141.26 142.25
KS 1.64 x 1073 1.70 x 1073 1.46 x 1073 1.58 x 1073
KL 5.99 x 1077 1.56 x 1076 597 x 1077 1.57 x 1076

M =12 JS 3.79 x 107* 6.22 x 1074 3.79 x 107*  6.26 x 1074
Q1,var 137.77 137.85 141.65 141.76
Q3.var 138.15 138.26 142.03 142.12

Table 3: Statistical divergence measures between the empirical density function based on
the “exact” realizations and the LSM approximation using different basis functions; mean of
300 runs with NV = 3,000, 000 sample paths each. @ var and Q3 var are the first and third
quartile of the distribution of the 99.5% VaR.

pronounced. In particular, sample error here may render an arbitrary realization under C4
or C5 to be better than an arbitrary realization under the singular function approximation.
This is also true for the VaR estimate as is evident from panel (d) in Figure 2, where the
horizontal line at 139.74 depicts the “exact” VaR.

Before we move on to analyzing the results for VaR in more detail, we note that our
findings with regards to the superior performance of the singular functions are not driven by
the specific payoff function: As discussed in detail in Section 4, our notion of optimality is tied
to the model framework rather than a specific cash flow model. To illustrate, Table 3 shows
results for different basis functions for different payoffs, where we modify the guaranteed
annuity payment b in the payoff definition (14). More precisely, we show results for a less
generous contract where we decrease the annuity by 5% (b) and a more generous contract
where we increase the annuity by 5% (b). In addition to the statistical divergences as in
Table 1, we also report the first and third quartiles of 300 VaR estimates based on different
sample paths. The estimated “exact” 99.5% VaR when using b is 137.89, and the “exact”
99.5% VaR for b is 141.79. The results are analogous: Singular functions perform better
than monomials, and the difference can be substantial for M = 6 and 12.

Risk measure estimation.

One of the key take-aways from the foregoing analyses is that a significant number of basis
functions M is necessary to obtain an accurate approximation to the capital distribution.
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Figure 3: Box-and-whisker plots for 99.5% VaR calculated using the LSM algorithm with
different numbers of basis functions M; based on 1,500 runs with N = 3,000,000 sample
paths each.

For instance, panel (d) in Figure 2 shows that the “exact” VaR estimate lies outside the
whiskers for the singular value functions as well as for most of the monomial combinations
— and significantly so for combinations 6 through 15. Similarly, the “exact” VaR estimates
of 137.89 and 141.79 for an annuity payment of b and b (Table 3) are outside of the first to
third quartile for M = 4 and 6. To illustrate this relationship in more detail, Figure 3 gives
box-and-whisker plots for different numbers of basis functions M — both singular functions
and monomials — based on 1,500 runs of N = 3,000,000 sample paths each.

The left-hand panel (a) shows that obtaining a good approximation for the distribution
tail is not possible for limited M and, indeed, the pattern is erratic for the monomials: While
the box-and-whisker plot for M = 6 suggests a decent prediction, the situation worsens
for M = 10 and the “exact” VaR estimate now lies outside the whiskers. In contrast, the
pattern is more systematic for the singular functions as the different (orthogonal) dimensions
are addressed sequentially. For M = 12 basis functions, the functional approximation is
sufficiently accurate even in this tail region, and adding additional basis function does not
improve on the central estimate — at least for the singular functions (right-hand panel (b)
of Figure 3). Again, we notice that the pattern for the monomials is slightly erratic so that
we can conclude that, for VaR estimation also, singular functions perform superior as long
as we rely on a sufficient number M.

As a second observation, even for N = 3,000,000 sample paths, the results between the
different simulation runs vary considerably. For instance, for M = 12 and singular functions,
the whiskers based on the different runs span roughly 139.1 to 140.5, so the lengths is 1.4
or roughly 1% of the central estimate. Given the usual scale of capital requirements in the
financial services industry, the cost for an additional percent of required capital is substantial.
And, in fact, the whisker plots become wider as the number of basis functions increases
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(roughly [139,140.7] for M = 20). This originates from the interplay between the number
of basis functions M and the number of simulations N mentioned above.

To illustrate this interplay in more detail, Figure 4 replots Figure 3b for singular func-
tions, but varying the number of underlying simulations N used in each run. We find that
for a limited number of simulation paths N, the mentioned effects are more pronounced.
Specifically, for N = 100,000 the length of the whisker plot amounts to more than 5% of
the central estimate and it increases as the number of basis functions M increases. We also
notice a bias in the central estimate for M = 18 and M = 20, which is a manifestation of
the result from Proposition 3.4 — although, as discussed there, the bias is overshadowed by
the sample variance resulting from the Monte Carlo estimation.

This tradeoff between the number of basis functions M and the number of simulation
paths N is also a primary reason of why the choice of basis functions is material. Since N will
have to grow as M increases, given a fixed computational budget, feeding the algorithm with
a very large number of basis functions will be futile. With a limited number of simulations
but a large number of basis functions, the regression approximation will over-fit spurious
patterns in the simulated data. While navigating this bias-variance tradeoff is a familiar
problem in the statistical learning context (Hastie et al., 2009), we note that conventional
mitigation techniques such as regularization do not trivially resolve this difficulty.

To illustrate, we repeat our VaR estimations for M = 16 basis functions — using both,
singular functions and monomials — where instead of OLS, we employ ridge regression to
fit the approximation.® We choose the regularization parameter based on 10-fold cross-
validation. Figure 5 displays box-and-whisker plots for the 99.5% VaR for N = 50,000
sample paths (left-hand panel (a)) and N = 3,000, 000 sample paths (right-hand panel (b)),
using both singular functions and monomials as the basis functions.

Comparing the results to the VaR estimates from Figure 3b, we find that relying on a
regularized regression can be precarious. More precisely, while the box-and-whisker plot for
the singular functions approximation in the case N = 50,000 seems to be roughly in line
with the results from Figure 4, the plot when using monomials as basis functions — while
notably tighter — now significantly undershoots and it no longer includes the “exact” VaR.
The findings for N = 3,000,000 are similar, although now here the “exact” VaR is outside
the whiskers also for the singular basis functions.

To provide intuition for these results, Figure 6 plots effective degrees of freedom (EDF)
for the fits underlying Figure 5 (we refer to Hastie et al. (2009) for the definition of EDF in
ridge regression). We notice that EDF's are very close to 15 for the singular functions, both
for N = 50,000 and N = 3,000,000 (Panels (a) and (b)). Since 16 basis functions correspond
exactly to 15 degrees of freedom (the constant term is always included), the shrinkage coming
from the regularization is relatively minor — although it is clear from Figure 5b that the effect
is still significant enough to move the VaR estimates downward. In contrast, for the monomial
basis functions, the EDFs are around 10.9 and 13.25 for N = 50,000 and N = 3,000, 000,
respectively, so that here the shrinkage is substantial (Panels (c¢) and (d)) — explaining both
the compression and the shifting of the box-and-whisker plots.

Since the regularization parameter is chosen so as to minimize the mean-squared pre-

8The ridge regression coeflicients, o) minimize the sum of squares plus a regularization term

ridge’
Ui 22/122 a3, where 7 is a regularization parameter. We assume that the first basis function is always constant.
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Box—and-Whisker plot for VaR at 99.5%
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Figure 4: Box-and-whisker plots for 99.5% VaR calculated using the LSM algorithm with
different number of simulations (N = 100,000, N = 500,000, and N = 3,000,000) and
different numbers of basis functions M; based on 1,500 runs. All figures are produced using
singular functions.
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Box-and-Whisker plot for 99.5% VaR via Ridge Regression
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Figure 5: Box-and-whisker plots for VaR at 99.5% calculated using the LSM algorithm
with ridge regression to fit parameters with different basis functions (M = 16) and different
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diction error across all realizations, it is not surprising that the predictions worsen in a
certain area of the distribution. Indeed, it appears that the incurred bias for gains in terms
of variance has an adverse effect for estimating VaR. For the singular functions, while the
impact on the VaR estimate is limited, this is because overall there is very little change in
the estimates relative to OLS — whereas for the monomial basis functions, the estimates are
zooming in on the wrong target.

6 Conclusion

We discuss a Least-Squares Monte Carlo (LSM) algorithm for estimating financial capital in
nested valuation settings. The algorithm relies on functional approximations of conditional
expected values and least-squares regression. After establishing the algorithm, we analyze
convergence of the approach and examine properties when estimating VaR. Moreover, we
discuss the choice of basis functions in the functional approximation. Specifically, we show
that the left singular functions of the valuation operator that maps cash flows to capital
present optimal basis functions for a model framework. We derive optimal basis functions
in settings where the underlying Markov state variable follows a Gaussian distribution, and
we apply our ideas in a relevant example from life insurance.

Our numerical illustrations document that the algorithm can provide viable results at
relatively low computational costs (compared to, e.g., nested simulations). The algorithm,
therefore, provides one potential solution to pressing practical problems such as the calcu-
lation of capital requirements in life insurance according to the recent Solvency II directive.
Two key insights emerge from our analyses in view of applying the LSM algorithm in prac-
tical settings. First, increasing the number of basis functions comes at a cost since it is
necessary to simultaneously increase the number of simulations N, and finessing the tradeoff
is not trivial. Second, in multivariate settings, a key issue is not only choosing the functional
class of basis functions — which appears less crucial in our exercises — but rather the combina-
tions of basis functions that are important for spanning the payoff space in view of valuation.
Even in the three-dimensional setting considered here, this is of critical importance as naive
choices may yield significantly worse results. The choice of basis functions will become even
more important as the complexity and the dimensionality of the problem increase, as it is
the case in practical applications.

Various extensions are possible. One aspect that is particularly interesting is tailoring the
approach to the evaluation of tail risk measures, to boost its performance when estimating
VaR or ES.
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Appendix

A  Proofs

Proof of Lemma 2.1. 1. Let Ae F;, 0 <t <. Then:

P(4) = EF[1,]=EF a—Pu = E* |EF g;%u F
oF ZaTIv e
1 0Q
P A P
= — | —| F || =P(A).
st rava | R
2. Let X : Q — R be a random variable. Then:
N 7 | P
BPX|F) = —— B | x| F | =R | fT]
EP [% ’]:T} OP E [W |}—T}
—_——

_ P;]EP [a@x 7| —me(x| A,

]

Proof of Lemma 2.2. Linearity is obvious. For the proof of continuity, consider a sequence
h(™ — h € H. Then:

EP [LW) —Lh]2

= ¥ (iﬁp (ROt YT}) ]

- EF | EF [(h§”) —hj) (Yj)|YT]EED [(h,ﬁ"’ —hk) (Yk)|YT]
L gk

z/; < [(EH} Gy \YTDQ] x \/IE]P’ {(Eﬁ’ (R = hi) (vi) |YT]>2}
zk: E” [(hE”) ) (Yj)] x \/Eﬁ” [(h,i”) i) (Yk)] 0, n— o0,

where we used the Cauchy-Schwarz inequality, the conditional Jensen inequality, and the
tower property of conditional expectations. O]

IN

IN
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Proof of Lemma 2.3. Consider the operator L) mapping from L?(R?, 3, Iﬁ’yj) to L2(R4, B, Py, ).
Since LY is the (conditional) expectation under the assumption that there exists a joint den-
sity, it can be represented as:

5= [ xwymgn i)ty = [ 5220 g,

Ty, (.’I?)

z/RdX(y)Mm(y) dy:/RdX(y)k(w) my;(y) dy,

Ty, (Y) 7y, (x)

where x is an element of L?(R%, B, If”y ), Ty;(y) and 7y, (z) are marginal density functions for
Y; and Y, in L*(R%, B,Py,) and L*(R%, B, Py, ), respectively, and k(z,y) = % Thus,

LU) is an integral operator with kernel k(z,y). Moreover:

/ \k(ﬂf,y)\Qm(y)ﬂyT(ﬂc)dyd:v=/ / Ty, 1y, (Yl2) 7y, py; (2y) dy dz < oo
R4 JRd R4 JRd

Thus, LY is a Hilbert-Schmidt operator (e.g. Prop. VI1.6.3 in Werner (2005)), and therefore
compact. Finally, L is the sum of LY, j = 7, ..., T, and therefore also compact. n

Proof of Proposition 3.1. Py_is a regular Borel measure as a finite Borel measure and hence
L? (Rd,B,]P’yT) is separable (see Proposition 1.2.14 and p. 33 in Werner (2005)). Now if
{ex, k=1,2,..., M} are independent, by Gram-Schmidt we can find an orthonormal system
S ={fr, k=1,2,..., M} with lin{ey, £k =1,2,..., M} =lin S. For S, on the other hand,
we can find an orthonormal basis {fi, k € N} = 5" D S. Hence:

=S o= Y e o s = M

F=L(Crfi) =l
where: .
H@M Gl = 3 NG fi)P =0, M = o0
k=M+1

by Parseval’s identity.
For the second part, we note that:

N
(@9, LaY = a0 = (4) T Y e (vl
i=1

where e(-) = (e1(+),...,en(-)) and AMN) = [% SV ex(YA) el(YT(i))} ot is invertible
1<k,I<
for large enough N since we assume that the basis functions are linearly independent. Hence:

d(N)—>Oz:(Oz1,...,0z ) = (A(M) EF
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by the law of large numbers, where AM = |E¥ [¢;, (Y;) ¢ (YT)]] , so that:
1<kJ<M

CULN) — o' 4N) 5 ¢l = CM) Poas.

Finally, for the third part, write:

VO = Zxk Zaje] ) + €5,

where E [¢;|Y;] = 0, Var [¢;|Y;] = £(Y;), and Cov [¢;, €;]Y;] = 0. Thus (see e.g. Section 6.13
in Amemiya (1985)):

VN[oo — @] — Normal |0, (A(M))_l [E [€k<YT>€l(YT)E(YT)H1<k,l<M (A(M)>_1 7

(. — _— 7

3

so that:
VN |G — C’\ﬁM’N)} = ¢'[a — a™]VN — Normal (0,£%D),

where:

€M) — ¢ e (23)

Proof of Corollary 3.1. Relying on the notation from the proof of Proposition 3.1, we now
have:

N
1
NZ Y(Z —>a N — o0

in L*(Q, F,P) by the L?version of the weak law of large numbers (Durett, 1996). Thus:

IA
()=
=
=1
D
=
D
/N
Q
>
|
Q
o
N—

EF [|e(Y;) &™) — e(Y,) o]

k=1
M

< S /EF [ez(YT)]\/]EP [d,ﬁm . akr -0, N — .
k=1

The last assertion in the statement is a direct consequence of the Extended Namioka Theorem
in Biagini and Fritelli (2009). O

Proof of Proposition 3.2. Since (VT(i), YT@)) are i.i.d. as Monte Carlo trials, the first part of
Assumption 1 in Newey (1997) is automatically satisfied. The conditions in the proposition
are then exactly Assumptions 1 (part 2), 2, and 3 in his paper for d = 0. Thus, the claim
follows by the first part of Theorem 1 in Newey (1997). O
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Proof of Proposition 3.3. Analogously to the proof of Proposition 3.2, the first part of As-
sumption 1 in Newey (1997) is automatically satisfied. The conditions in the proposition
are taken from the second part of Assumption 1, Assumption 8, the discussion following
Assumption 8, and Assumption 9 in his paper. Thus, the claim follows by the first part of
Theorem 4 in Newey (1997). O

Proof of Corollary 3.2. The first assertion immediately follows from convergence in distribu-
tion as discussed in Section 3.1. For the quantiles, the convergence for all continuity points
of F(;Tl follows from Proposition 3.1 and the standard proof of Skorokhod’s representation
theorem (see e.g. Lemma 1.7 in Whitt (2002)). O

Regularity Conditions in Proposition 3.4 (Gordy and Juneja, 2010). Regularity conditions on
the joint probability function (pdf) g of (—C™), ZW).

e The joint pdf gy(+,-), its partial derivatives 8%gN(y, z), and 53—;291\[(3;, z) exist for each
N and for all (y, z).

e For N > 1, there exist non-negative functions po n(-), p1.n(-), and ps y(-) such that:

- 9N<y7 Z) S pO,N(Z)7

5N (Y, 2)| < prw(2),

59_;29N<y7 Z)’ S P2,N(2)> and
for all y and z. In addition:

sup/ |z|"pin(2)dz < 00
N J-

fort=0,1,2 and 0 <r < 4.
The proof of Proposition 3.4 directly follows Proposition 2 in Gordy and Juneja (2010). [

Singular Value Decomposition of a Compact Operator (Section 4.2). Suppose the operator
A mapping from H; to Hsy is compact, where H; and H, are separable Hilbert spaces.
Then, A can be represented in the following form (see Section VI.3 in Werner (2005) or
Huang (2012)):

Ax = Z Ak (X, Gr) s frs (24)
k=1
where:
e (-, -)3, denotes the inner product in Hy;

e {2} are non-zero eigenvalues of A*A and AA* with A\; > Ay > - -, counted according
to their multiplicity. Here, Ay is called the k-th singular value of A;
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e {gr} C Hi, called the (right) singular functions, are the orthonormal eigenfunctions of

A*A; and

o {fi} C Ha, called the (left) singular functions, are the orthonormal eigenfunctions of
AA* satisfying A g, = A\i [

The representation (24) is called singular value decomposition (SVD) of A and the triple
(Aks 9k, fr) 1s called singular system for A. The functional sequences, {gi}x>1 and {fi}i>1,
form complete orthonormal sequences of H; and Hs, respectively. The singular values Ay
are non-negative and the only possible accumulation point is zero. O

Proof of Proposition 4.1. We consider the approximation of L by an arbitrary rank-M op-
erator Lp, which can be represented as:

M

LF = Zak < 7uk> €k,

k=1

where {ax}iL, C Ry, {ux}L, are orthonormal in H, and {ez}}L, are orthonormal in
L? (Rd, B, ]P’YT). Denote by L3 the operator when choosing (ag, ug, €x) = (wg, Sk, pr). Then:

inf ||L — Lp||* < sup ||[Lx — Lix|?
b Ixl=1
2

> wilx sk

k=M+1

= sup
[[x[|=1

oo
= s Y st = wh

Ixl=1 4 571

On the other hand, consider any alternative system (o, u, ex) for an arbitrary finite-rank
operator L. Then choose a non-zero x such that xq € lin{sy, ..., spr41} N lin{uy, ..., up }- #
{0}. Note that L — Lp is compact and bounded. Therefore:

HL N LFHQ > HLXO - LF X0H2 _ HLX0||2
- [[%ol|? [[%ol|?
M+1
Yl wil(xo, sk)l? r
= Z Whryq-
St (o, s |2 i
Hence:
inf IL = Lp|* = wip = IIL = L.
Now since:

inf |L — Lp||*= inf ||L— P(e,...,en)  L|J?,

Lp {e1,...,enm}
where P(eq, ..., epr) denotes the orthogonal projection on the subspace spanned by (eq, ..., €xr),
the claim follows by Equation (7). O
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Proof of Proposition 4.2. Proceeding as in Equation (9) and with Equation (7), we obtain:

inf sup |C' Z anrer(y)| < sup |Cr(y) — aiM) (?J))
aM yey yey
= sup| Z wi (X, sx) Pr(Y)|
VY k=M1
< S wrleosn)] suplory)]
k= M+1 ey

< 3 wuliel el sup eato)
k=M+1

= > willxl| sup r(y)] = O (wi)
k=M+1 yey
for a fixed x since the {py} are uniformly bounded, where the second and third inequalities
follow by the triangle and Cauchy-Schwarz inequalities, respectively.
Then, going through the assumptions of Proposition 3.2 with B = I and e™) = (ey, ..., exr)’,
we obtain: i
EF [é(M)(YT)é(M)(YT)/] =1

due to the orthonormality of the singular functions. Therefore, the smallest eigenvalues is
bounded away from zero uniformly for every M. Moreover, for fixed y € Y, ||eM)(y)|| =

\/901(19)2 + -~ om(y)?, so that:
sup Hé(M)(y)H =sup \/901(?/)2 4+ SDl(y)Q
yey yeY

M
< sup r(y)? < | max sup M =CvM=((M
> supoi(y) \/M sup (1) VA = Go(M)
since the {yy} are uniformly bounded. Thus, the claim follows by Proposition 3.2. O

Proof of Lemma 4.1. The assertions on the conditional distributions are standard. For show-
ing that L is compact, we check that the transition and the reverse transition density func-
tions satisfy the condition in Lemma 2.3. Note that the transition density function can be
written as:

Y7 |Y- (y‘l’) - g(y; Hr + F/E;l(x - :LLT)? ET\T)

1 1 ,
_ - o —F/E_l . Z_l _ —F/Z_l — s
(2m) P2, |12 exp{ g W= pr —TE @ = )] By (y = pr — T2 o = o))
1 ‘E 1ET| -y ‘1/2
(27T)d/2‘ET‘ ‘1/2 ‘Z ]_ZT' - 12 ‘1/2
1 - —
X exp [—2 (¢ = pr = () "y — ) S TS (2= pr = B(1) l(y_MT))]

s, B _ _
= ||F|| (5 17 + 2 () "y — pr), £ (T) 718, T8, )
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We evaluate the following integral:

[ mve ol v el

2, B _ _
= ||F|| Rdg(w;MT+ET(F') Ny = pr), B (0) 180, T7IE)

X9 (:C;MT +FZ;1(y_MT)7ET|T) dx

= 1
@D 5 (1) 1S, TS, 5|
X exp [ — % (S Yy — pr) = TS5y — ir) (S (T) 18, T8 + )
X (S:(1) Ny — pr) = TS5 (y — pr))
_ 1% 1
- TIEm)2 |5, (1) 12T‘ T=1%, + 5,7
X exp [ % (y — pr) (D718, = S2'T) (S-(1) 'Sy, T80 + ET|T)_1 (ZAM) =T (y — pr)

V—l
=C1 x g(y; ur, V),

where we use results on the product of Gaussian densities (Vinga, 2004) and where C} is
an appropriate constant to obtain ¢(y; pr, V). Therefore:

/ / Ty, (Y|T) 7y, vy (2]y) doe dy =/ Cig(y; pr, V) dy = Cy < 0.
R4 JRA Rd

Proof of Lemma 4.2. L* can be found via:

(whom), = [ wh@yme e @de= [ [ nm olo)do| mia) o 0
- / 1) [ [ eyl i g 5 dy = (. Lo

where L*m(y) = [pa m(2) 7y, v, (xy) dz. We obtain for LL*:

LL*p

/ L*(8)Ty v, (sl2) ds

d

/Rd {/ Yy, v (yls) dy} Typlv. (s|z) ds

= [ e [ ma ol (le) ds dy.
R

-~

KA(xry)

=
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It is useful to express the reverse density as in the proof of Lemma 4.1:

by
9(347 Ky, |s) ET'T) = %g (37 M + ETril(y - ,uT>7 ZTrilzT\T(F/)ilzT) .

Hence:

Ka(z,y) = /]Rd Ty, v (U8)Tyy |y, (s]7) ds

Xr _ _ _
= ‘\T\‘ 9 (s;ur + 2007y — pr), SeT 'S0 (D) 71S1]) X g(s3 gy Srpr) ds

LYY 1
T (2m)d2 |SrD =18 p(T) 187 + S|

1 _ _
X exp ( =5 (BT (Y = ) T (@ = pir)

1/2

/

_ _ —1 _ _
X (S 'S p (D) 'S + Bpy,) (S0 (y = pr) = 'S0 (@ — pr)) )
B 1
(2m) 42 TS (ST 18 (1)1 8g + Sppp) 57T

1 _ _ Ay _ — -1
X exp < =5 = p =T TS @ = ) (07 S (Sr D 8y (T) ™87 + Sy

x Sel ™ (y — pr = TEZTS (2 — 1)) >
= g(y; pr + TS TS (20— r), 87 = IELTSSITSSTY)
A

=g(y; pr + Al — pir), Br — AS-A) = g(y; pa(x), Sa),

pa(x) Za

where in the third equality we again rely on results on the products of Gaussian densities
from Vinga (2004). L*L can be derived analogously. O

Proof of Lemma 4.3. We start by recalling the considerations from Khare and Zhou (2009):
Let (X;) on RY be a MAR(1) process satisfying the following stochastic difference equation:

X=Xy 1+, t21, (25)

where ® € R¥? and (1;)¢>; are independent and identically distributed, 7, ~ N (0, H). (X;)
has a unique stationary distribution N (0, X)) if and only if H = ¥ — ®X®’, and the process is
reversible if and only if 3 = ¥®’. Khare and Zhou (2009) show that if these assumptions
are satisfied, the transformed Markov operator for (25) has eigenvalues which are products of
eigenvalues of ® and the corresponding eigenfunctions are products of Hermite polynomials.

Now note that for a random variable Y that is distributed according to K s(z,-), we can
write:

Y —p; = A([E - H’T) + Ca, (26)
where ¢ ~ N(0,%,4). Since from Lemma 4.2 we have that ¥, = 3, — AX, A" and:

AY, =T8T =%, A,
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for ¥ = ¥, the operator L L* has the same structure of the Markov operator for (25) that is
reversible and stationary.
Following the approach by Khare and Zhou (2009), denote by Ei/ % the square root matrix
of ¥,. Then:
SoV2ARY2 = o1 FE;1F/E;1/Q

is symmetric and thus orthogonally diagonalizable:

SIV2ARY? = PAP & A= (ZYV2P)A(P'R[Y?).

T

In particular, the entries of the diagonal matrix A are the eigenvalues of A.
Now for the transformation (11) of the random vector Y from (26), z¥(Y), we obtain:

Ex, ["(V)|z] = PEV2A(x — pr)
PYY2R2PAPS Y2 (2 — ) = A2P (),

T

and:
Varg, [27(Y)[z] = PE22,5Y%P
= PR V(8 - AN ANSIVPP =T — A2
Moreover:
Er,. [ZP<YT)} = P/E;l/zEerT Yy — ] =0
and:
Var,, [2F(Y;)] =P'SV28,572p =1
The second part follows analogously. O]

Proof of Proposition 4.3. For fixed 2’ (Y), we obtain from Carrasco and Florens (2011) that
the univariate orthonormal Hermite polynomial of order n; is an eigenfunction under K4 :
Exy [l (2 (V) ]a] = N B, (2 ().

Moreover, the product of these polynomials are also eigenfunction since:

Ercy [y hn, (577 (V))|2] = I By [, (27 (V) ]2] = (TG ) (TP, (277 (2))) -

The orthogonality of the eigenfunctions is proved in Khare and Zhou (2009). Note that the
product of normalized Hermite polynomials is already normalized since:

Ery. [ (0 o (2P (V)] = By, [0, () (V)] = T By, B, (2P (V)] = 1.

Right singular functions are obtained similarly from z%(X). O

7
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Proof of Lemma 5.1. Under P, the solutions of (15), (16), and (17) at time 7 are:
1 2 ! S
¢r = qo + m— 505 T+ 0g awy,
0
r. = roefa‘r 4 v (1 . efon') + Ur/ e*a(Tft)thr,
0
Hztr = /L:cem— + ¢/ eﬁ(T_U)dWZj'
0

Thus, the joint Gaussian distribution of Y, is given by:

ar g+ (m—3i0%)r o%T plQUSUTBg(()? 7) P130S¢Bu(<0, T))
rr | ~ N | |roem®" +~4(1—e97) p12050, B (0, 7) o2 173@ ngaﬂ/}%
_o—(a—kr)T 26T _
Ha+r prze" maastﬂ(O, 7) P230’r¢11€? ¢2 %
(27)
so that . and X, are given by
qo + (m — %O’%) T U?q T plZUSUTBr(07 T) p130-3wB,u((07 T))
_ ,—2aT _—(a—r)T
Uy = |10 +y (1 —e )|, X, = |p12050,B,(0,7) o= — 230 =
K _o—(a—kr)T 2KT _
pze™ P13 B (0,7)  pagopp = Preg =t
To derive the distribution under Qg, first note that for 7 < s < T"
o)y 4 (5O —as-n)) 4 95 (g-aT-s) _ g-o(T+s-2r)
,rs:e()fST,rT_i_ ,_y_? (1_6(187')_’_?“2(6(1 S_eOé S 7')
_ ,02307»¢ €H<T_S) — G_OC(S_T)J'_K(T_T) _ 1-— 6_0[(8_7) +o, /S efa(sfy)dz’r'
K a—kK a . Y’

so that the integral of fTT rsds can be evaluated using the stochastic Fubini theorem:

T —a(T—1 2 —a(T—1
1— (T—) 1 — (T—)
R e P i e
- a a a

0.3 (1 _ e—a(T—T) e—a(T—T) _ e—?a(T—T))

202 a a
D230, e(T—-7) _q er(T=7) _ g—(a=r)(T—T) 1 1 — e—alT=7)
K Kla — k) ala — k) a o

T — —

1 — e~ (T—y)

+ ar/ e—dZ;.
- o)
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Thus, under Qg with known Y, the solutions of (20), (21), and (22) are:
1— e—a(T—T) 0.2 1— 6—04(T—7')
ar=¢+|——|r+ <7—;> T—7
« « «
0.3 1 — e—a(T—7) B e—T—7) _ p—2a(T—T)
2002 o o
1 1 — g~T—7) . &(T-7) _q
—O’%(T—T)—W<T—T— ¢ )—p1505¢ (e —T+T
2 « « K K
2301 ef(T=7) _q e(T=7) _ o—(a—k)(T—T) 1 T 1 — ¢g—(T—7)
_ _ _ - R
K k(o — k) ala — k) a e
T T —a(T—
1 — e~ (T-y)
- as/ dz5 + a,,/ L a7z,
T T «
—a(T—T1) = 0-7% —a(T—-71) 0-7% —2a(T—7)
ry =e rr + T <1—6 )+ﬁ(l—e )
—(a—r)(T— —a(T— T
_ pmory <1 I T T>> o / o0z
K a—kK « -
(T 2 (eQK(TT) -1 eN(TfT) _ 1) p230'r'¢ (en(TT) -1 1— ef(osz-c)(Tfﬂ')
Ha+T =€ Hztr — — - - -
K 2K K o K a—K
T
+ 1) / e T=tazh,
so that the (Gaussian) conditional distribution of Y7|Y; is given by:
2
qr /’LQT|QT O-quqT O-QT7TT|QT77"T OQT7N1+T|QT7NI+T
2
rr ‘YT ~ N /J[’TT|7“7— 9 O-QTJ'TMT»T'T O-T‘T"I”-,- UTT7Mx+T|T77H$+T I
2
’LLIJ'_T /'L“$+T|H$+T O'qT»/‘LI+T|qT»,u‘7J+T O'TT7“I+T|TT’/‘LIL’+T O’,L"a:+T‘,LL:L'+T
e
(28)
where:
- o2 1— e—Oé(T—T)
N O.z 1 — g—T—7) B e—a(T=7) _ o—2a(T—7)
202 a a

K

;0230'7”77b <6R(T—7') -1 GH(T—T) o e—(a—n)(T—T) 1 ( 1— e—a(T—T)
_ N I A BN

wlo—k) ala — k) a
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—a(T-7) g —a(T—7) or —20(T—7)

02301 <1 — e l@=r)(T-7) 1 _ ea(Tr))

K a— K «

MMI+T|MI+T = Ha+r€

K(T—r) _ P230rY (e”(TT) -1 1- e(an)(TT))

« K a—kK
wQ e26(T—7) _ 1 R (T=7) _ 1
K 2Kk K )
z _ e—a(T=7) _ o—2a(T—7)
2 — 52 UT 1 e 1 e
O-QT|qT_O-S(TT)+a2<T7'2 - + o )
J 2oosor (g Loe
(0% Q ’
1 — e~T—7) o2 [1- 9e—oUT—7) 4 —2a(T—7)
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It is possible to write the conditional mean of Y7 given Y, in the following affine form:

Orp gt |re izt = p230, 1) (

Harlg- 1 W;ﬁ 0 qr
trgr, | =0 e oT=7) 0 - | +C:
Fopig | pp s R 0 0 er(T=7) 3 Hoxtr
"
=HY, + .,

where C; is a constant matrix defined by remaining terms of mean vector of Yr|Y; after defin-
ing HY,. The unconditional distribution of Y7 under P is also Gaussian since Y, and Yr|Y;
follow Gaussian distributions. Thus, it suffices to specify a mean vector and a covariance
matrix of Y7 under P to specify its distribution:

pr = EF[Yy] = B [E28 Yy |Y;]] = B [HY; + C,] = Hy, + C,

Sr = Cov'[Yz] = Covf [E8[Y7|Y;]] + EF [Cov® (Y7 |Y;]]
= Cov' [HY; + C;| + E" [Sr,] = HE H' + Zqy.



AN LSM APPROACH TO THE CALCULATION OF CAPITAL REQUIREMENTS 47

Hence, Yr ~ N(up, 7).
The final step is to specify the joint distribution of Y, and Y7 by finding Cov(Y;, Yr).
Note that:
I' = Cov(Yy, Yr) = E7[Y;Y7] — EF[Y,JEF([v7]
EF (B2 Y, Y7 Yo ]] = por gty
E° Y (Y/H' + C})] — pr iy
=Y. H.

Therefore,
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