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Abstract

The decomposition of dynamic risks a company faces into components associated with
various sources of risk such as financial risks, aggregate economic risks, or industry-specific
risk drivers is of significant relevance in view of risk management and product design, par-
ticularly in (life) insurance. Nevertheless, although several decomposition approaches have
been proposed, no systematic analysis is available. This paper closes this gap in literature by
introducing properties for meaningful risk decompositions and demonstrating that proposed
approaches violate at least one of these properties. As an alternative, we propose a novel MRT
decomposition that relies on martingale representation and show that it satisfies all of the prop-
erties. We discuss its calculation and present detailed examples illustrating its applicability.
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1 Introduction

Decomposing risks into components associated with different sources of risk is a problem of prac-
tical significance. The primary contributions of this paper are twofold: On the one hand, we
introduce properties for a meaningful risk decomposition and show that decomposition methods
proposed in literature suffer shortcomings in view of these properties. On the other hand, we
propose a novel decomposition approach based on martingale representation, labeled MRT decom-

position, and show that it satisfies all the meaningful risk decomposition properties. We discuss
and illustrate the calculation of the MRT decomposition in the context of life insurance, where it
is particularly relevant.

The total risk a company faces is frequently influenced by various sources of risk such as
financial risk, aggregate economic risk, and industry-specific risk factors. The interaction of these
sources can be quite complex, so that the individual risk contributions are typically neither obvious
nor readily available. For instance, this is the case in life insurance, where final payoffs – that
commonly occur years or even decades after the origination of the contracts – depend on the
interaction of financial factors and guarantees, aggregate demographic trends, and actual deaths
observed in the portfolio of insured. Nonetheless, companies need to assess the relative importance
of each source of risk in order to be able to devise adequate risk management strategies. This may
simply be a matter of identifying the most significant source of risk for focusing efforts in case
resources for risk management are limited. Alternatively, the decomposition may allow to gauge
how much resources should be dedicated to each source of risk, taking into account its contribution
to the aggregate risk. Evaluating the impact of different sources of risk is also important in view
of product design, particularly when there are different risk penalties for different sources of risk,
and in view of calculating risk-based capital requirements for financial institutions.1

In this paper, we commence by introducing a number of properties that define a meaningful risk
decomposition. In particular, we posit that a decomposition should consider the entire distribution
of the company’s risk (P1), that resulting decompositions should be unique (P3) and independent
of the ordering of the sources of risk (P4), that the different risk components can be clearly at-
tributed to the different sources of risk (P2), that the risk components are invariant to changes in
the scale of the sources of risk (P5), and, finally, that the decomposition should aggregate to the
(normalized) entire risk (P6). We discuss the relevance of these properties in the context of man-
agement, concluding that all of them appear essential for an expedient decomposition. However,
it turns out that when benchmarking decomposition approaches proposed in literature with this list
of properties, for each method at least one of the properties fails to hold.

1For instance, in the insurance context, individual risk contributions need to be quantified explicitly within Sol-
vency II, the new regulatory framework for insurance companies within the European Union (Directive 2009/138/EC,
Article 112).
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This leads us to propose our alternative MRT decomposition that is based on the Martingale
Representation Theorem, hence the name. Our definition makes use of the dynamic nature of the
considered risk, i.e. we exploit the underlying “process structure.” Intuitively, the MRT risk com-

ponents capture the non-predictable change in the total risk due to (only) the change in the corre-
sponding risk source as we move forward an instant in time. We frame our formal introduction in a
life insurance setting, where risk decompositions are particularly relevant as outlined above. More
precisely, we consider a group of policyholders modeled by a counting process and we assume that
the (systematic) sources of risk are driven by a finite-dimensional Brownian motion. This framing
is more general than just relying on a diffusion framework as is common when (solely) consid-
ering financial risk factors, and therefore illustrates how the definition can be adapted to different
settings. For instance, modeling a policyholder’s time of death is similar to modeling a firm’s
time of default or the defect of a machine within a production company. We show that the MRT
decomposition satisfies each property P1 to P6, and we document the expedience of the resulting
decomposition in our specific setting. In particular, we show that the risk component associated
with unsystematic mortality risk vanishes as the portfolio size increases – whereas the systematic

risk components approach a non-zero limit. We derive explicit formulas for the the MRT decompo-
sition in terms of Malliavin derivatives in the general case and in terms of derivatives of conditional
expectations in the Markov case.

We illustrate the MRT decomposition in various applications. In addition to a variety of sim-
pler motivating examples, we consider a detailed practical application in the context of a variable
annuity contract with a guaranteed minimum death benefit (GMDB) – a very common product in
the US insurance market. We decompose the total risk into four sources of risk: fund risk, interest
rate risk, systematic mortality risk, and unsystematic mortality risk. Our calculations show that for
an unhedged exposure, fund risk is by far the most dominant risk, particularly when considering
moderately sized insurance portfolios. Different applications are considered in follow-up studies
(Schilling, 2017; Jetses, 2018, e.g.).

Related Literature and Organization of the Paper

Dynamic risk decompositions are particularly relevant in the financial services industry, in view
of risk management (Hoem, 1988), pricing (Christiansen, 2013), product design (Kochanski and
Karnarski, 2011), and capital regulation. Thus, it is not surprising that there are a number of papers
suggesting different methodologies for deriving risk components in the more specialized actuarial
and financial risk management literatures. Bühlmann (1989), Fischer (2004), Martin and Tasche
(2007), and Christiansen and Helwich (2008) use a conditional expectations approach, which is the
probabilistic foundation of the well-known variance decomposition. In particular, Fischer (2004)
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provides a list of desirable properties for a reasonable decomposition method, although the focus is
on the specific decomposition into financial risk and (unsystematic) mortality risk in life insurance.
A generalized conditional expectations approach – the so-called Hoeffding or functional ANOVA
decomposition – is used by Rosen and Saunders (2010) in the context of credit risk portfolios.
Christiansen (2007) uses a generalized Taylor expansion method for decomposing functionals of
different sources of risk in the insurance context. A different method, e.g. applied by Gatzert
and Wesker (2014) in the context of life insurance and also implicitly used in the Solvency II
framework, “switches off” the randomness of all sources of risk that are momentarily not under
consideration. We revisit all of these approaches in Section 2.4 and document their shortfalls in
view of our meaningful risk decomposition properties.

Decomposing a risk into its components obviously relates to studying its sensitivity with re-
gards its risk sources, or sensitivity analysis in brief (see Borgonovo (2011) or Borgonovo and
Plischke (2016) for surveys). More precisely, a decomposition into stochastic components is re-
lated to the problem of global sensitivity analysis (Saltelli et al., 2008; Wagner, 1995), where one
studies the sensitivity of the model “output” to various (random) “inputs” – so that not only the
sensitivity at one particular input point is relevant. For instance, there exist analogies in desirable
characteristics for (global) sensitivity analysis and risk decomposition. In this context, Baucells
and Borgonovo (2013) propose properties desirable to sensitivity analysis – with some similarities
to our list (e.g., in view of P2 and P5) – and propose a new class of sensitivity measures on that
basis. However, there are a number of aspects that differ between decomposing a risk and studying
its sensitivity to risk sources. For instance, a sensitivity measure is typically a number and not
a random variable (P1). Furthermore, aggregation (P6) may not be a concern – e.g., one usually
relies on first-order effect functions only for assessing the “trend” identification of an input factor.
Indeed, the Hoeffding decomposition, which does not satisfy P6 (see Sec. 2.4), is the foundation
of much of the development of global sensitivity analysis. That said, a decomposition may serve
as the basis for developing sensitivity measures. For instance, a decomposition can be used for
defining inner statistics in the sense of Borgonovo et al. (2016), which then give rise to global

sensitivity measures.
Risk decomposition also relates to risk capital allocation: Risk capital allocation starts with

a (linearly) aggregated portfolio and determines risk contributions of the different positions via
gradients of portfolio risk measures (see Bauer and Zanjani (2013) for a detailed review on capital
allocation). These risk contributions, which are also referred to as Euler allocations, are important
ingredients to the risk-adjusted return on capital (RAROC) and similar performance evaluation
techniques. In fact, this practice is a key motivation for a growing literature on determining risk
measure sensitivities (Fu et al., 2009; Hong, 2009; Liu, 2015, among others). A (linear) risk
decomposition will allow to identify capital allocations of the different risk components, which
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provides guidance for risk management. In particular, Karabey et al. (2014) rely on several of
the decomposition approaches listed above (conditional expectations, Hoeffding, and Taylor) to
determine Euler allocations.

From a technical perspective, the derivation of our MRT decomposition is closely related to
quadratic hedging approaches under a martingale measure (Møller, 2001; Dahl and Møller, 2006;
Barbarin, 2008; Dahl et al., 2008; Biagini et al., 2013; Biagini and Schreiber, 2013; Biagini et al.,
2016, among others) with the conceptual difference that we operate under the physical measure
since we are interested in risk assessments. We rely on this analogy in our derivations but also
present some new results in this direction such as the decomposition of arbitrary payoffs within
our general setting and the integration with the Clark-Ocone formula from Malliavin calculus.

The remainder of the paper is organized as follows. Section 2 presents the properties that
define a meaningful risk decomposition and analyzes whether conventional approaches from liter-
ature satisfy these properties. Section 3 lays out the considered life insurance modeling framework,
introduces our MRT decomposition within this framework, and discusses its calculation and prop-
erties. Section 4 describes and analyzes our variable annuity example. And, finally, Section 5
concludes. Proofs and other technical material are provided in the E-Companion to this paper.

2 Meaningful risk decompositions

2.1 General setup

For the remainder of the paper, we fix a finite time horizon T ∗ and a filtered probability space
(Ω,F ,F,P) with F = (Ft)0≤t≤T ∗ satisfying the usual conditions.2 Throughout, Ft describes the
“full” information available at time t, where we assume F0 to be trivial and set F = FT ∗ .

Let T ∈ [0, T ∗] be the maturity of the longest exposure, and let the random variable L0,T ,
shortly L, denote the sum of all exposures over [0, T ] (possibly discounted to time 0). Then we
suppose that total risk as from time 0 is given via the normalized random variable R = L −
E (L) , i.e. we interpret risk as the random deviation of the exposure from its expectation. Note
that the discount factors possibly included in L introduce specific investment assumptions which
themselves may cause risk.

The primary concern of this paper is decomposing risk R into different risk components. More
precisely, we posit that there are k sources of risk, where each source of risk i ∈ {1, 2, . . . , k} is
modeled by an F-adapted stochastic process Zi = (Zi(t))0≤t≤T ∗ , and we write Z = (Z(t))0≤t≤T ∗

with Z(t) = (Z1(t), . . . , Zk(t))
>. The risk variable R is assumed to be σ(Z)-measurable, i.e. it

2In principle, P could be any probability measure and the technical results in this paper are not fixed to a particular
interpretation. However, since our focus is on a company’s risk, we interpret P as the real-word measure and this
interpretation is reflected in our language.
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(only) depends on the information spanned by Z. Then we consider decomposition methodologies
that assign each source of risk Zi a corresponding risk component Ri, which itself is a σ(Z)-
measurable random variable and which is supposed to capture the randomness of R caused by Zi.
Here the maximal exposure time T is fixed, so that R is not time-dependent.

Hence, it is important to note that we consider a static decomposition problem although the
underlying setting is dynamic. Indeed, we could also define the meaningful risk decompositions in
the next subsection within a simpler, static setting, but the novel MRT decomposition method we
propose exploits the dynamic nature.

2.2 Definition of meaningful risk decompositions

While several papers propose a variety of decomposition methods in a similar context, thus far
there has been no systematic assessment and comparison among these different approaches. In
what follows, we introduce a list of properties we argue a meaningful risk decomposition should
satisfy. In particular, minimum requirements for the relation between the given sources of risk
Z1, . . . , Zk and the corresponding risk components R1, . . . , Rk resulting from the decompositions
are postulated (equalities between random variables are in the almost sure sense):

P1 Randomness

Individual risk components are given by exactly k (possibly degenerate) random variables

R1, R2, . . . , Rk. We introduce the relation↔ for a decomposition methodology and write
(R,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk) to indicate that the risk R depending on (Z1, . . . , Zk)

corresponds to the decomposition (R1, R2, . . . , Rk).

P2 Attribution

Ri represents the risk component related to source of risk i. Formally, we require
that whenever the risk R is σ(Zi)-measurable and Zi is stochastically independent of
(Z1, . . . , Zi−1, Zi+1, . . . , Zk), then Rj = 0 for all j 6= i.

P3 Uniqueness

The decomposition methodology yields a unique decomposition. Formally, we require that
(R,Z1, . . . , Zk)↔ (R1, R2, . . . , Rk) and (R,Z1, . . . , Zk)↔ (R̃1, R̃2, . . . , R̃k) impliesRi =

R̃i for all i ∈ {1, 2, . . . , k}.

P4 Order invariance

The decomposition is invariant to the order of the sources of risk 1, 2, . . . , k. Formally,
consider a permutation π : {1, 2, . . . , k} → {1, 2, . . . , k} and assume (R,Z1, . . . , Zk) ↔
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(R1, R2, . . . , Rk). Then we require:

(R,Zπ(1), . . . , Zπ(k))↔ (Rπ(1), Rπ(2), . . . , Rπ(k)).

P5 Scale invariance

The decomposition is invariant to changes in the scale of the sources of risk. For-
mally, assume (R,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk), and let Z̃i(t) = fi(Zi(t)) for all
i = 1, . . . , k, t ∈ [0, T ∗], where, for each i, fi : R → R is a smooth, invertible function. If
(R, Z̃1, . . . , Z̃k)↔ (R̃1, R̃2, . . . , R̃k), then we require that Ri = R̃i for all i ∈ {1, . . . , k}.

P6 Aggregation

The decomposition aggregates to the total risk faced by the company. Formally, we require
that for each risk R and sources of risk Z with (R,Z1, . . . , Zk) ↔ (R1, R2, . . . , Rk), there
exists a function A(R,Z) : Rk → R such that:

R = A(R,Z)(R1, R2, . . . , Rk).

P6∗ Additive aggregation

A special case of P6 is an additive aggregation function, i.e. the case where R is given as the
sum of the individual risk components:

R =
k∑
i=1

Ri.

Note that the relation ↔ will be a function if P3 is satisfied. Furthermore, if additionally P6
holds and the function A(R,Z) does not depend on R (as is e.g. the case under P6∗), then ↔ is
injective in R for fixed Z since:

(R1, . . . , Rk) = (R̃1, . . . , R̃k)⇒ R = AZ(R1, . . . , Rk) = AZ(R̃1, . . . , R̃k) = R̃.

2.3 Discussion Part 1: Why should a risk decomposition be meaningful?

Randomness (P1) and Aggregation (P6) are not only desirable characteristics. Rather, they describe
the nature of a risk decomposition. Namely, they postulate that we can decompose the total liability
risk into k fragments from which the total risk can be retrieved. Obviously aggregation would not
be possible if the individual components were not the same elements as the total risk – i.e. if they
were not random variables. The latter point deserves emphasis: As opposed to sensitivity measures
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or risk (capital) allocations – which are numeric – a risk decomposition reflects the full randomness
of the components.

Attribution (P2), Uniqueness (P3), and Order Invariance (P4) establish a clear link between
a risk source and the resulting component. Such a clear link is important when the decompo-
sition drives managerial decisions, since it would be problematic when spurious or immaterial
aspects have material influence. More precisely, absence of uniqueness (P3) implies that depend-
ing on some exogenous influence (e.g., a parameter), the decomposition will be (R1, R2, . . . , Rk)

or (R̃1, R̃2, . . . , R̃k) leaving the manager with choosing the “right” one. Similarly, it should not
matter of whether a risk source that is completely irrelevant to the problem is included in the scope,
which is what P2 expresses. Finally, the simple label of what the “first” risk source is should not
matter – a mere relabeling of the risk sources should not affect the decomposition, which is what
P4 entails.

Scale invariance (P5) is necessary to ensure that the risk components are quantitatively com-
parable. Scaling the risk sources via a given transformation does not change the nature of the risk,
and thus should not affect decompositions (consider e.g. a change in currency or a change to log-
arithmic scale for one of the risk sources). In particular, without P5, there may exist incentives
to adjust decompositions via the framing of the problem, which is not desirable if they influence
decision making.

An additive decomposition (P6*) is desirable for multiple reasons. It allows for the natural
interpretation that the risk components add up to the total risk. Moreover, for a decomposition into
summands, it is straightforward to derive capital allocations via the gradients of risk measures.

2.4 Discussion Part 2: Are conventional approaches meaningful?

For discussing conventional decomposition approaches with regards to whether or not they satisfy
the meaningful risk decomposition properties, for simplicity we assume T ∗ = T = 1 and that
the random variable L is only influenced by two sources of risk Z1 = (Z1(t))0≤t≤1 and Z2 =

(Z2(t))0≤t≤1. In particular, we set:

Z1(t) = θ1 t+ σ1W1(t) and Z2(t) = θ2 t+ σ2 (ρW1(t) +
√

1− ρ2W2(t)),

where W1 = (W1(t))0≤t≤1 and W2 = (W2(t))0≤t≤1 are independent Brownian motions, θi ∈ R,
σi ≥ 0, and 0 ≤ ρ ≤ 1, i ∈ {1, 2}. Hence, Z1(1) ∼ N(θ1, σ

2
1), Z2(1) ∼ N(θ2, σ

2
2), and

Correl(Z1(1), Z2(1)) = ρ.
Recall that total risk is identified with R = L−E(L). To preview our results, we find that each

considered risk decomposition approach fails to satisfy at least one property, whereas the MRT
decomposition that we formally introduce in the following section is meaningful.
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Variance decomposition

A common approach for decomposing R into risk components is a conditional expectations ap-
proach (Bühlmann, 1989; Fischer, 2004; Martin and Tasche, 2007; Christiansen and Helwich,
2008, among others). The basic idea is that R1 = E (R|Z1) captures the randomness of R caused
by Z1. Since the remaining risk R2 = R − R1 = R − E (R|Z1) must represent the randomness
caused by Z2, the decomposition of the risk R = L− E(L) reads as:

R = E (R|Z1) + [R− E (R|Z1)] = [E (L|Z1)− E(L)]︸ ︷︷ ︸
=R1

+ [L− E (L|Z1)]︸ ︷︷ ︸
=R2

, (1)

with R1 and R2 representing the two risk components.
As a result of the orthogonality property of conditional expectations, a straightforward conse-

quence of (1) is:

Var(R) = Var(R1) + Var(R2).

Commonly, the latter equation is referred to as variance decomposition and frequently it is the
basis for applications (thus, we simply refer to the general decomposition (1) as “variance de-
composition”). Note that for an arbitrary risk R, the variance decomposition directly implies that
E(R1) = E(R) and E(R2) = 0. Of course, this asymmetry is irrelevant when considering the vari-
ance but potentially relevant when applying different risk measures. This emphasizes the necessity
to first standardize L to mean zero, i.e. considering the risk R = L − E(L), and to then apply
the decomposition approach, resulting in E(R1) = E(R2) = 0. We note that in global sensitivity
analysis, Var(R1)/Var(R) is referred to as the first-order sensitivity index of Z1 on R (Saltelli et al.,
2008, Eq. (1.25)), illustrating the relationship to risk decomposition.

Obviously, the risk components R1 and R2 are random variables (P1) and they add up to the
total risk (P6∗/P6). Since conditional expectations are unique almost surely, so is the variance
decomposition (P3). To check the attribution property (P2), for independent processes Z1 and Z2

and a σ(Z1)-measurable risk R, R2 = R − E (R|Z1) = 0. Conversely, if R is σ(Z2)-measurable,
R1 = E (R|Z1) = E(R). Therefore, P2 is satisfied since R is standardized to mean zero. The
variance decomposition is also scale invariant (P5), since for two smooth, invertible functions f1

and f2, with Z̃i(t) = fi(Zi(t)), i = 1, 2, we have R̃1 = E(R| Z̃1) = E(R|Z1) = R1 and
R̃2 = R − E(R| Z̃1) = R − E(R|Z1) = R2. However, as the following example illustrates, the
order invariance property (P4) is not satisfied:

Example 1 (Cf. Exercise 1.7 in Saltelli et al. (2008)). Assume that ρ = 0 and L = Z1(1)Z2(1).
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Then the variance decomposition of R = L− E(L) with respect to Z = (Z1, Z2) is given by:

R = E (Z2(1)) [Z1(1)− E (Z1(1))] + Z1(1)[Z2(1)− E (Z2(1))]

= θ2 σ1W1(1)︸ ︷︷ ︸
=R1

+ (θ1 + σ1W1(1))σ2W2(1)︸ ︷︷ ︸
=R2

.

In contrast, switching the order of Z1 and Z2, i.e. considering Z̃ = (Z̃1, Z̃2) = (Z2, Z1), the

variance decomposition approach yields:

R = θ1 σ2W2(1)︸ ︷︷ ︸
=R̃1

+ (θ2 + σ2W2(1))σ1W1(1)︸ ︷︷ ︸
=R̃2

.

Clearly, in general R1 6= R̃2 and R2 6= R̃1. In particular, if θ1 = θ2 = 0, the first decomposition

will imply R1 = 0 and R2 = R whereas the second decomposition will yield R̃1 = 0 and R̃2 = R,

i.e. either no risk or the total risk will be attributed to Z1 (or vice versa for Z2). �

In addition, although Z1 and Z2 may be correlated,R1 andR2 will be uncorrelated. This means
that correlated risk must be allocated in an uncorrelated way, which can further result in arbitrary,
order-dependent decompositions:

Example 2 Consider L = Z1(1) + Z2(1) with ρ > 0. Then the variance decomposition of R =

L− E(L) with respect to Z = (Z1, Z2) is given by:

R = [Z1(1)− E (Z1(1)) + E (Z2(1)|Z1)− E (Z2(1))] + [Z2(1)− E (Z2(1)|Z1)]

= (σ1 + σ2 ρ) W1(1)︸ ︷︷ ︸
=R1

+ σ2

√
1− ρ2W2(1))︸ ︷︷ ︸

=R2

.

In contrast, switching the order of Z1 and Z2, i.e. considering Z̃ = (Z̃1, Z̃2) = (Z2, Z1), the

variance decomposition approach yields:

R = (σ2 + σ1 ρ)
(
ρW1(1) +

√
1− ρ2W2(1)

)
︸ ︷︷ ︸

=R̃1

+σ1 (1− ρ2)W1(1)− σ1 ρ
√

1− ρ2W2(1)︸ ︷︷ ︸
=R̃2

,

where again R1 6= R̃2 and R2 6= R̃1 unless ρ = 0. �

Hoeffding decomposition

A related approach is based on the so-called Hoeffding or functional ANOVA decomposition (Ho-
effding, 1948; Efron and Stein, 1981; Sobol, 1993). See, for instance, Rosen and Saunders (2010)
or Karabey et al. (2014) for applications to credit risk and life insurance, respectively.
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Similarly to the previous approach, it relies on conditional expectations. For the risk R =

L− E(L), the Hoeffding decomposition reads:

R = E (R|Z1) + E (R|Z2) + [R− E (R|Z1)− E (R|Z2)]

= E (L|Z1)− E (L)︸ ︷︷ ︸
=R1

+E (L|Z2)− E (L)︸ ︷︷ ︸
=R2

+L− E (L|Z1)− E (L|Z2) + E (L)︸ ︷︷ ︸
=R1,2

,

where R1 and R2 are the risk components attributed to Z1 and Z2 in isolation, and R1,2 represents
the risk due to “joint effects.” This immediately illustrates the decomposition’s primary drawback,
namely that the total risk is not completely allocated to the individual sources of risk. In order
to have exactly one risk component for each risk source (P1), one possibility is to ignore the
joint term R1,2 of the Hoeffding decomposition and only consider the individual risk components
following the so-called Hájek projection, R ≈ R1 + R2 (Hájek, 1968). However, as the following
example shows, this leads to immediate problems with the meaningful decomposition properties,
particularly the aggregation property (P6).

Example 1 (Continued) Consider L = Z1(1)Z2(1) and assume both risks have mean zero, θ1 =

θ2 = 0. Then the Hoeffding approach yields R1 = R2 = 0 and R1,2 = R, i.e. the total risk results

from joint effects, which does not give any insights on the influence of the different sources of risk.

In particular, this example shows that the aggregation property (P6) is generally not satisfied since

for every function A(R,Z) : R2 → R we have A(R,Z)(R1, R2) = A(R,Z)(0, 0) 6= R whenever L is

not deterministic. �

However, properties P1 to P5 are satisfied for the Hájek projection: Clearly, the risk com-
ponents R1 and R2 are random variables (P1). Scale invariance (P5) follows by the same ar-
gument as for the variance decomposition. And for the attribution property (P2), let Z1 and Z2

be two independent processes; if R is σ(Z1)-measurable, then R is independent of Z2, so that
R2 = E (R|Z2) = E (R) = 0 (analogously for σ(Z2)-measurable R). Furthermore, the pri-
mary effects of the decomposition R1 and R2 are unique by the uniqueness of the conditional
expectations (P3) and obviously order invariant (P4), although dependence in the risk sources can
generate spurious higher-order terms in the Hoeffding decomposition (Saltelli and Tarantola, 2002;
Borgonovo and Plischke, 2016).

Taylor expansion

Christiansen (2007) proposes approximating functionals of random variables by their first order
Taylor expansion and interprets the resulting summands as risk components. More precisely, as-
sume L is of the form F (Z1(1), Z2(1)), where F : R2 → R is a Borel-measurable and differen-
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tiable function. Then this approach yields:

R = L− E(L) ≈ [F (z1, z2)− E(L)] +
∂F

∂z1

(z1, z2)(Z1(1)− z1)︸ ︷︷ ︸
=R1

+
∂F

∂z2

(z1, z2)(Z2(1)− z2)︸ ︷︷ ︸
=R2

,

where (z1, z2) denotes the (deterministic) expansion point. By using a generalized definition of
the corresponding gradients, Christiansen (2007) extends this approach to an infinite-dimensional
setting where L may depend on the entire paths of the processes Z1 and Z2.

As the key drawback, in case of non-linear functionals the first-order Taylor expansion and
its summands only approximate the risk R. In particular, the approximation error with a certain
realization highly depends on the choice of the expansion point, i.e. the Taylor expansion is “lo-
cal,” echoing similar limitations of traditional/local sensitivity analysis relative to global sensitivity
analysis (Saltelli et al., 2008; Borgonovo and Plischke, 2016).

Example 1 (Continued) The Taylor expansion with expansion point (z1, z2) yields:

R = L− E(L) ≈ [z1z2 − E(L)] + z2(Z1(1)− z1)︸ ︷︷ ︸
=R1

+ z1(Z2(1)− z2)︸ ︷︷ ︸
=R2

= L− E(L)− (Z1(1)− z1)(Z2(1)− z2).

Obviously, the approximation error amounts to−(Z1(1)−z1)(Z2(1)−z2), i.e. the more Z1(1) and

Z2(1) deviate from z1 and z2, respectively, the higher is the approximation error. In the special case

of choosing (z1, z2) = (0, 0) as expansion point, the decomposition results in R1 = R2 = 0, i.e. a

risk is neither allocated to Z1 nor to Z2. As a result, the aggregation property (P6) generally is not

satisfied since for every function A(R,Z) : R2 → R we have A(R,Z)(R1, R2) = A(R,Z)(0, 0) 6= R

(assuming that Z1(1)Z2(1) is not deterministic). Furthermore, due to the dependence on the

expansion point, the Taylor expansion approach is also not unique (P3). �

To show that scale invariance (P5) is violated, consider the following example.

Example 3 Assume that L = eZ1(1). Then the Taylor expansion yields:

R ≈ ez1 − E
(
eZ1(1)

)
+ ez1(Z1(1)− z1)

for some expansion point z1. However, for Z̃1(1) = eZ1(1) and z̃1 = ez1 we have:

R ≈ z̃1 − E
(
Z̃1(1)

)
+ (Z̃1(1)− z̃1),

and in general R1 = ez1(Z1(1)− z1) 6= eZ1(1) − ez1 = Z̃1(1)− z̃1 = R̃1. �
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Still, the Taylor expansion satisfies properties P1, P2, and P4 (at least for the specific func-
tionals). The risk components are obviously random variables, and order invariance can be easily
shown. For the attribution property, independence of the other source of risk will yield a zero
derivative and thus a zero risk component.

OAT approach

A different risk decomposition relies on “switching off” all of the randomness and then analyzing
the sources one-at-a-time (OAT). In the insurance domain, in addition to applications in research
(Gatzert and Wesker, 2014, e.g.), this method is in principle implied in the Solvency II framework
for measuring the influence of different sources of risk (CEIOPS, 2010). Moreover, it is related to
basic one-at-a-time (OAT) or one-factor-at-a-time (OFAT) approaches in (local) sensitivity analysis
(Borgonovo, 2011; Borgonovo and Plischke, 2016).

To illustrate, assume again thatL is of the form F (Z1(1), Z2(1)),where F : R2 → R is a Borel-
measurable function. Then the method suggests to model the risk components of R = L − E(L)

corresponding to Z1 and Z2 via R1 = F (Z1(1), z2) − E (L) and R2 = F (z1, Z2(1)) − E (L),
respectively, where z1, z2 ∈ R. In the context of Solvency II, z1 and z2 are typically chosen as
best estimates of Z1(1) and Z2(1). However, in general there is no clear answer on how z1 and
z2 should be chosen (again in analogy to the distinction of local vs. global sensitivity analysis).
In fact, the decomposition heavily depends on the choice of z1 and z2 and is thus not unique
(P3). Generally, the risk components also do not aggregate (P6). Both points are illustrated in the
following example.

Example 4 Assume that L = Z1(1) max{K −Z2(1), 0}, where K is a constant with E (Z2(1)) =

θ2 > K. Measuring the risk component of R = L−E(L) related to Z1 by replacing Z2(1) with its

expectation, the OAT approach yields:

R1 = Z1(1) max{K − θ2, 0} − E (L) = −E (L) .

Thus, although R > 0 with positive probability (assuming that L is non-constant) and R is in-

creasing in the realization of Z1(1), the risk attributed to Z1 is constant and possibly even negative.

However, choosing any deterministic approximation z2 < K yields R1 = Z1(1)(K − z2)− E (L)

with a different distribution for each choice of z2. Beyond uniqueness, the OAT approach also does

not satisfy the aggregation property P6 (and thus also not P6∗), which follows immediately from

the above with z2 = E (Z2(1)) = θ2 > K: for any function A(R,Z) : R2 → R, A(R,Z)(R1, R2) will

be σ(Z2)-measurable and thus A(R,Z)(R1, R2) 6= R (assuming that Z1 is not σ(Z2)-measurable).

�
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Summary of Decomposition Approaches

P1 P2 P3 P4 P5 P6 P6∗

Variance decomposition X X X × X X X
Hoeffding decomposition X X X X X × ×
Taylor expansion X X × X × × ×
OAT approach X × × X X × ×
MRT decomposition X X X X X X X

Table 1: Summary of decomposition approaches with regards to whether (X) or not (×) they
satisfy the properties P1 to P6∗.

Furthermore, the attribution property is generally not satisfied (P2):

Example 3 (Continued) For L = eZ1(1) = F (Z1(1), Z2(1)), R is σ(Z1)-measurable, but for

every z1 6= log(E (L)), we have R2 = F (z1, Z2(1))− E (L) = ez1 − E (L) 6= 0. �

In contrast, the OAT approach satisfies properties P1, P4, and P5 (at least for the specific
functionals). Again, the risk components are obviously random variables (P1), and order in-
variance can be easily shown (P4). For scale invariance (P5), let f1 and f2 be two smooth, in-
vertible functions and define Z̃i(1) = fi(Zi(1)) and z̃i = fi(zi), i = 1, 2. It directly follows
that L = F (Z1(1), Z2(1)) = F (f−1

1 (Z̃1(1)), f−1
2 (Z̃2(1))) = F̃ (Z̃1(1), Z̃2(1)). Hence, we have

R̃1 = F̃ (Z̃1(1), z̃2)− E (L) = F (Z1(1), z2)− E (L) = R1 and analogously for R̃2 = R2 (assum-
ing the change of scale is the same for z̃i as for Z̃i(1), i = 1, 2).

Table 1 summarizes the results. For each decomposition, at least one of the properties fails
to hold. Motivated by these deficiencies, we introduce a novel decomposition approach labeled
MRT decomposition that satisfies all meaningful risk decomposition properties. In what follows,
we illustrate and motivate the MRT decomposition in the context of the examples above, before
we provide a more formal introduction, discussion, and application in the context of life insurance
in the following sections.

MRT Decomposition (informal)

We revisit the examples from above using the MRT decomposition. We refer to the E-Companion,
Part B, for details on calculation using the tools we provide in the following sections.
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Example 1 (Continued) The MRT decomposition yields:

R = Z1(1)Z2(1)− E (Z1(1)Z2(1))

=

∫ 1

0

(Z2(t) + θ2(1− t))σ1 dW1(t)︸ ︷︷ ︸
=R1

+

∫ 1

0

(Z1(t) + θ1(1− t))σ2 d
(
ρW1(t) +

√
1− ρ2W2(t)

)
︸ ︷︷ ︸

=R2

.

The example illustrates the key intuition behind the MRT decomposition: The MRT risk compo-

nents capture the non-predictable change in the total risk due to (only) the change in the corre-

sponding risk source as we move forward an instant in time. In particular, for risk source one, the

non-predictable change at time t is given by innovations in the underlying Brownian motion W1,

dW1(t) = W1(t+dt)−W1(t). This change is scaled by σ1 and (Z2(t)+E[Z2(1)−Z2(t)]) from the

definition of Z1 and R, respectively, and aggregated through time to give R1 (and analogously for

R2). In particular, this demonstrates how our definition makes use of the dynamic nature of con-

sidered risk. We exploit the underlying “process structure” to improve on the approaches above

that rely on static decompositions. The components R1 and R2 are random (P1), attributable (P2),

unique (P3), order-independent (P4), scale-invariant (P5), and add-up to the total risk (P6*). �

Example 2 (Continued) For L = Z1(1) + Z2(1), the MRT decomposition yields:

R = Z1(1) + Z2(1)− E (Z1(1) + Z2(1))

=

∫ 1

0

σ1 dW1(t)︸ ︷︷ ︸
=R1

+

∫ 1

0

σ2 d(ρW1(t) +
√

1− ρ2W2(t))︸ ︷︷ ︸
=R2

=
︷ ︸︸ ︷
Z1(1)− E (Z1(1)) +

︷ ︸︸ ︷
Z2(1)− E (Z2(1)) . �

Example 3 (Continued) For L = eZ1(1) = Z̃1(1), the MRT decomposition yields:

R = eZ1(1) − E
(
eZ1(1)

)
=

∫ 1

0

eZ1(t) e(θ1+σ2
1/2) (1−t) σ1 dW1(t)︸ ︷︷ ︸
=R1

= R

=

︷ ︸︸ ︷∫ 1

0

Z̃1(t) e(θ1+σ2
1/2) (1−t) σ1 dW1(t) = R. �

Examples 2 and 3 demonstrate that in addition to – or, rather, because of – satisfying the mean-
ingful decomposition properties, the resulting components are in line with what intuition suggests.
For additive risks (in the risk sources), the MRT decomposition simply yields the corresponding
summands, irrespective of their ordering (P4) and their correlation. And for a risk that is only in-
fluenced by a single source of risk, the component will equate with the risk itself (P2), irrespective
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of scaling (P5).
However, as the following example shows, the MRT decomposition also delivers in settings

where it is more difficult to develop an intuition.

Example 4 (Continued) To simplify exposition, we assume θ1 = θ2 = ρ = 0. Then the MRT

decomposition for L = Z1(1) max{K − Z2(1), 0} yields:

R = L− E(L)

=

∫ 1

0

(
(K − Z2(t)) Φ

(
K − Z2(t)

σ2

√
1− t

)
+ σ2

√
1− t√
2π

exp

{
−(K − Z2(t))2

2σ2
2 (1− t)

})
dW1(t)︸ ︷︷ ︸

=R1

+

∫ 1

0

Z1(t) Φ

(
K − Z2(t)

σ2

√
1− t

)
σ2 (−dW2(t))︸ ︷︷ ︸

=R2

,

where Φ and φ are the standard normal cumulative and density distribution functions, respectively.

The second component R2 may be more intuitive: The instantaneous risk in R2 is modulated by

Z1(t) due to the factor structure of L, it is relevant with time-t probability Pt(K − Z2(1) > 0) =

Φ
(
K−Z2(t)

σ2
√

1−t

)
, and an increase in W2 decreases L so that the last term carries a minus sign. The

first part of the first component R1 has a similar interpretation. To obtain intuition for the second

part, note that even for Z2(t) = K the risk in Z1(t) is non-zero – even though the first part is –

since it is possible that Z2(t) < K an instant later. In fact, σ2 measures how fast Z2(t) will move

away from K. This second part assures that the risk components add up to the total risk (P6∗). �

3 MRT decomposition in life insurance

We frame our formal introduction of the MRT decomposition in a life insurance setting. The rea-
sons are twofold. On the one hand, as detailed above, risk decompositions are particularly relevant
in life insurance, in view of risk management, pricing, product design, and capital regulation. In-
deed, applications in life insurance were the initial motivation for this research. On the other hand,
this framing is more general than simply considering a diffusion framework – as is popular when
solely considering financial risks – and therefore illustrates how the definition can be adapted to
other situations in insurance and beyond. In particular, all the examples considered in the previ-
ous section also fall within our framework. The first part lays out the setting for the remainder of
the paper. Section 3.2 introduces the MRT decomposition and shows that it is meaningful in the
sense of Section 2.2. Section 3.3 discusses its calculation, where we rely on analogies to hedging
problems for insurance liabilities. And, finally, we analyze diversification properties in Section
3.4.
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3.1 Life insurance modeling framework

On the basis of the general setup described in Section 2.1, we specify the sources of risk Z1, . . . , Zk

as well as L as they are typical for life insurance. We assume that the uncertainty of the insurer’s
future loss L arises from the uncertain evolution of a number of financial and demographic factors
as well as the actual occurrence of deaths in the insurance portfolio. For the former, we introduce
an n-dimensional, locally bounded process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ , the so-called state

process, where each process Xi is interpreted as source of risk, and assume that all financial and
demographic factors are functions of X. Specifically, we assume that the time-t prices of all risky
assets on the financial market as well as the interest rate r(t) = r(t,X(t)) can be expressed in
terms of X(t).3 The state process itself is driven by a d-dimensional standard Brownian motion
W = ((W1(t), . . . ,Wd(t))

>)0≤t≤T ∗ , where G denotes the augmented filtration generated by W,
which is assumed to be a sub-filtration of F:

Assumption 1 The state process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ is an n-dimensional Itô pro-

cess satisfying:

dX(t) = θ(t) dt+ σ(t) dW (t) (2)

with deterministic initial value X(0) = x0 ∈ Rn, where the n-dimensional drift vector θ =

(θ(t))0≤t≤T ∗ and the n × d-dimensional volatility matrix σ = (σ(t))0≤t≤T ∗ are G-adapted with

continuous paths.

For notational convenience and without much loss of generality, we consider m homogeneous
policyholders aged a at time 0. As is conventional in settings with aggregate demographic uncer-
tainty (Biffis, 2005; Biffis et al., 2010; Dahl and Møller, 2006; Dahl et al., 2008, among many
others), we model the remaining lifetime τ ia of policyholder i as seen from time 0, i = 1, . . . ,m,

as the first jump time of a doubly stochastic or Cox process with intensity (µ(t))0≤t≤T ∗ , where
µ(t) = µ(t,X(t)) is non-negative and continuous. That is, the probability to decease in the next
instant is contingent on aggregate stochastic demographic factors that are included in the state pro-
cess, whereas the event of death is triggered by an idiosyncratic random jump. As pointed out in
Biffis et al. (2010), we can construct – and simulate – individual death times via:

τ ia = inf

{
t ∈ [0, T ∗] :

∫ t

0

µ(s)ds ≥ Ei

}
, i = 1, . . . ,m,

where Ei, i = 1, . . . ,m, are i.i.d. unit exponential random variables independent of GT ∗ and
where we use the convention inf ∅ = ∞ for individuals that survive beyond the time horizon

3Within particular models, the prices of risky assets, interest rates, or mortality indices may be components of the
state process X.
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(τ ia > T ∗). In particular, the residual lifetimes τ ia, i = 1, . . . ,m, of the homogeneous policyholders
are by construction conditionally identically distributed and conditionally independent given the
σ-algebra GT ∗ . Defining I =

∨m
i=1 Ii, where Ii = (I it)0≤t≤T ∗ is the augmented filtration generated

by the death indicator process (1{τ ia≤t})0≤t≤T ∗ , we naturally assume that F in Section 2.1 is given
by F = G ∨ I. Writing Γ(t) =

∫ t
0
µ(s)ds for the so-called cumulative mortality intensity, we

immediately obtain:

Lemma 1 For t, s ∈ [0, T ∗], t ≤ s, i = 1, . . . ,m:

1. P (τ ia > t|Gt) = e−
∫ t
0 µ(s)ds = e−Γ(t) and particularly P (τ ia > 0) = 1;

2. P (τ ia > t| GT ∗) = P (τ ia > t| Gs);4 and

3. P (τ ia > T |Ft) = P (τ ia > T |Gt ∨ I it) = 1{τ ia>t}
P (τ ia > T |Gt)
P (τ ia > t|Gt)

= 1{τ ia>t}E
(
e−

∫ T
t µ(s)ds

∣∣∣Gt).

Generalizations of the setting that preserve these results are possible (Jeanblanc and Rutkowski,
2000; Biffis et al., 2010).

Each life insurance contract in the company’s portfolio is assumed to entail the same cash flows,
the only difference being the remaining lifetimes. Thus, we denote the number of policyholders
that have died until time t by N(t) =

∑m
i=1 1{τ ia≤t}, so that N = (N(t))0≤t≤T ∗ represents the only

further source of risk in addition to the sources of riskXi, i = 1, . . . , n. Let FW,N =
(
FW,Nt

)
0≤t≤T ∗

denote the augmentation of the filtration generated by the processes W and N and note that FW,N

is a sub-filtration of F.
For motivating the considered sources of risk and, in particular, for calculating the proposed

decomposition later on, we need to specify the insurer’s lossL. To keep the setting general, the cash
flows associated with each life insurance contract in the company’s portfolio may be independent
of the lifetimes, contingent on the policyholder’s survival, or contingent on the policyholder’s
death. Furthermore, we distinguish between discrete as well as continuous cash flows. Each cash
flow may include several payments from and to the insurance company. Positive payments are
interpreted as payments made by the insurer (mostly benefits paid) and negative payments are
interpreted as payments received by the insurer (mostly premiums). Consequently, we define the
insurer’s total loss L as:

L = C0,T +
∑̀
j=0

(m−N(tj))Ca,j +

∫ T

0

(m−N(t))Ca(t) dt+

∫ T

0

Cad(t) dN(t), (3)

where 0 = t0 < t1 < . . . < t` = T, ` ∈ N, are discrete points in time. In detail, the different
quantities in (3) denote:

4According to Jeanblanc and Rutkowski (2000), this is equivalent to the so-called H-hypothesis, which says that
every G-martingale remains a martingale with respect to the larger filtration F.
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• C0,T : The sum of all (possibly discounted) payments in [0, T ] that do not depend on τ ia, i =

1, . . . ,m, such as hedging returns, benefits from a fixed-term insurance, etc.;

• Ca,j: The sum of all (possibly discounted) payments at or after time tj that are contingent on
survival until time tj, j = 0, . . . , `, such as single premiums, discrete premium payments,
discrete annuity payments, benefits from pure endowment insurances, benefits from period
certain deferred annuities, etc. as well as death benefits paid (see below);

• Ca(t): time-t intensity of all continuous payments that are contingent on survival until time t
or, in other words,Ca(t) dt is the sum of all payments in the infinitesimal period [t, t+dt] that
are contingent on survival until time t, t ∈ [0, T ], such as continuous premium payments,
continuous annuity payments, etc.;

• Cad(t): the sum of all (possibly discounted) payments at time t that are contingent on death
at time t, t ∈ [0, T ], such as death benefits paid immediately upon death.

We do not explicitly include discrete payments contingent on death within (tj−1, tj], j =

1, . . . , l, say Cad,j , such as death benefits paid at the end of the period since:

(N(tj)−N(tj−1))Cad,j = (m−N(tj−1))Cad,j − (m−N(tj))Cad,j (4)

can be represented as a difference of two discrete survival cash flows. For this reason, we assume
that C0,T and Ca,j are GT ∗-measurable, i.e. the cash flows Ca,j may depend on market information
after time tj , whereas Ca(t) and Cad(t) are assumed to be Gt-measurable. This assumption also
allows us to include unit-linked annuity contracts with a guaranteed annuity period and similar
policies: For instance, with a five year guarantee period starting at age 65, a payment at age 68 may
depend on the state of the market then but may be solely contingent on survival past 65. Indeed,
this distinction in measurability is one of the main reasons why we explicitly include continuous
as well as discrete cash flows. Note that due to its form, the total loss L is FW,NT ∗ -measurable.

3.2 The MRT decomposition

Within the life insurance modeling framework introduced in the previous section, the objective
is to find an approach that decomposes the insurer’s risk R = L − E (L) into risk components
attributed to the sources of risk the insurer faces in a meaningful way (cf. Section 2.2). Inspired
by the martingale representation theorem, we propose a decomposition into stochastic integrals
with respect to the compensated sources of risk and interpret each integral as the risk component
of the respective source of risk. Here “compensated” means that as for the risk itself, we subtract
the predictable part (“trend”) from each of the sources of risk. These subtracted terms are then
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referred to as the compensators. This is necessary since the expected value of the risk R – which
is zero after the normalization – needs to match up with the decomposition.

As introduced in the previous section, the sources of risk are identified with, on the one hand,
the state processes Xi = (Xi(t))0≤t≤T ∗ , i = 1, . . . , n, and, on the other hand, with the number
of deaths in the portfolio N = (N(t))0≤t≤T ∗ . The corresponding compensated processes, i.e. the
processes less their F-compensators, are denoted by MW

i = (MW
i (t))0≤t≤T ∗ , i = 1, . . . , n, and

MN = (MN(t))0≤t≤T ∗ , respectively. The MRT decomposition is then defined as follows:

Definition 1 Let L be FW,NT ∗ -measurable and R = L− E(L). A decomposition of the form:

R =
n∑
i=1

∫ T ∗

0

ψWi (t) dMW
i (t) +

∫ T ∗

0

ψN(t) dMN(t), (5)

where ψWi (t), i = 1 . . . , n, and ψN(t) are F-predictable processes, is called MRT decomposition

of R. The corresponding MRT risk components are given as:

Ri =

∫ T ∗

0

ψWi (t)dMW
i (t), i = 1, . . . , n, and Rn+1 =

∫ T ∗

0

ψN(t)dMN(t).

We write (R,X1, . . . , Xn, N)
MRT↔ (R1, . . . , Rn+1).

Obviously, each integral in (5) is interpreted as the portion of the total randomness of R caused by
the associated source of risk.5

Remark 1 Our definition focuses on the insurer’s risk as from time 0. However, with appropriate

modifications all related definitions and results can be transferred to the insurer’s risk at any

future time t ∈ [0, T ∗] (considered from time 0). For example, in analogy to L and Equation (3),
the insurer’s total loss at time t, Lt,T , can be defined as the sum of all future cash flows in [t, T ],

where possible discount factors of the cash flows need to be adjusted to time t. The insurer’s risk

at time t then follows as Lt,T − E (Lt,T | Ft). A decomposition of the form (5) can be analogously

found for Lt,T − E (Lt,T ) as for L− E (L) (with possibly different integrands). Since all integrals

in (5) are martingales, it follows for the insurer’s risk at time t that (for simplicity, we use the same

notation for the integrands as above):

Lt,T − E (Lt,T | Ft) =
n∑
i=1

∫ T ∗

t

ψWi (s)dMW
i (s) +

∫ T ∗

t

ψN(s)dMN(s),

5Similar interpretations of stochastic integrals can be found e.g. in Christiansen (2013) for unsystematic risk and
in Biagini et al. (2013) under a risk-neutral measure. In particular, the risk component Rn+1 describes the random-
ness introduced by N , i.e. by the random occurrence of deaths in the portfolio, and thus corresponds to the inherent
unsystematic mortality risk.
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and the corresponding MRT risk components can be defined as integrals starting from t.

The motivation for and the MRT decomposition’s existence and uniqueness are implied by the
martingale representation theorem, as shown by the proposition below. However, we first provide
the specification of the compensated processes:

Lemma 2 1. The unique compensator of Xi is given by AWi = (AWi (t))0≤t≤T ∗ , where

AWi (t) =
∫ t

0
θi(s) ds, i = 1, . . . , n. Thus:

MW
i (t) =

d∑
j=1

∫ t

0

σij(s) dWj(s), 0 ≤ t ≤ T ∗, i = 1, . . . , n.

2. The unique compensator of N is given by AN = (AN(t))0≤t≤T ∗ , where AN(t) =
∫ t

0
(m −

N(s−))µ(s) ds. Thus:

MN(t) = N(t)−
∫ t

0

(m−N(s−))µ(s) ds, 0 ≤ t ≤ T ∗,

where, for completeness, we define N(0−) = 0.

Proposition 1 Assume that n = d, det{σ(t)} 6= 0 for all t ∈ [0, T ∗] P-almost surely, and

that L is FW,NT ∗ -measurable and square integrable. Then there exist FW,N -predictable processes

ψW1 , . . . , ψ
W
n , ψ

N : [0, T ∗]×Ω→ R such that the MRT decomposition (5) of R = L−E(L) exists.

The representation is unique in the sense that the integrands ψW1 , . . . , ψ
W
n and the integrand ψN

are a.s. unique on [0, T ∗] × Ω and {(t, ω) ∈ [0, T ∗]× Ω : N(t−) < m} , respectively, both with

respect to λ⊗ P, where λ denotes the Lebesgue measure on [0, T ∗]. Moreover:

E

([∫ T ∗

0

ψN(t)dMN(t)

]2
)
<∞. (6)

Remark 2 The previous proposition is based on the assumption that each insurance contract in

the considered portfolio entails the same cash flows. For relaxing this assumption, it is sufficient to

split the considered portfolio into sub-portfolios with identical cash flows and to apply the result

from above to each sub-portfolio separately. Moreover, if the payments depend on the sequence of

deaths as within joint life policies, it is possible to extend the setting and consider the processes in

the general filtration F implying d+m driving martingales. We focus on FW,N here since it is the

most relevant setup and to keep the presentation concise.

If n 6= d, existence and uniqueness of the MRT decomposition (5) are not necessarily given.
In fact, as follows from the proof, we need to look for ψW (t) such that the equation ψ̃W (t) =
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ψW (t)σ(t) holds true, where existence and uniqueness of ψ̃W (t) result from the martingale rep-
resentation theorem. If n > d, there are fewer equations than unknowns so that uniqueness is
not guaranteed. On the other hand, if n < d, there are more equations than unknowns so that a
solution may not exist. In what follows, we focus on the case n = d. If n 6= d, we assume that
either redundant state processes (which can be represented via other state processes) are removed
or additional state processes are artificially added, both along with an adjustment of the interpreta-
tion of the risk sources. In contrast to a hedging problem, where the number of state processes – or
rather securities – is exogenously given, this procedure is viable for a risk decomposition problem.

The key motivation for the definition of the MRT decomposition is provided by the following
proposition: It satisfies the meaningful risk decomposition properties from Section 2.2.

Proposition 2 Assume that the state process X = (X1, . . . , Xn) is defined as in Assumption 1

with n = d and det{σ(t)} 6= 0 for all t ∈ [0, T ∗] P-almost surely. Let L be FW,NT ∗ -measurable and

square integrable. Then the MRT decomposition:

(R,X1, . . . , Xn, N)
MRT↔ (R1, . . . , Rn+1)

defined via (5) satisfies the properties P1, P2, P3, P4, P5, P6, and P6∗.

Remark 3 While the notion of uniqueness of the MRT decomposition (P3) is based on the de-

scription of X in Assumption 1, it is important to note that it will not depend on the representation

of X, since the compensated risk processes MW
i , i = 1, . . . , n, coincide for each representation.

In particular, we will obtain the same MRT decomposition if we choose a representation of X in

terms of correlated Brownian motions.

3.3 Calculation of the MRT decomposition

The calculation of the MRT decomposition amounts to determining the integrands ψ̃W1 , . . . , ψ̃
W
n , ψ

N

in (5). The fundamental theorem of calculus states that integrands in Riemann integrals are given
by a function’s derivatives. In analogy, the integrands here are given by certain derivatives, al-
though these derivatives have to be taken with regards to random variables/processes. This is the
subject of the so-called Malliavin calculus or stochastic calculus of variations (see Nualart (2006)
and Di Nunno et al. (2009) for detailed introductions). Specifically, denoting by D1,2 the set of
random variables that are Malliavin differentiable with respect to each one-dimensional Brown-
ian motion Wi of W = (W1, . . . ,Wd), the time-t Malliavin derivative with respect to Wi, Dt,i(·),
satisfies:

Dt,i

(
d∑
j=1

∫ T

0

fj(s) dWj(s)

)
= fi(t), t ∈ [0, T ], i = 1, . . . , d,
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where
∑d

j=1

∫ T
0
fj(s) dWj(s) ∈ D1,2.

A relatively general result for the calculation of Dt,i is the Clark-Ocone formula (Di Nunno
et al., 2009, Section 4, e.g.). However, the Clark-Ocone formula is only applicable to independent
driving processes, which renders a direct application to our setting impossible. More precisely,
since we are considering stochastic mortality intensities, the number of deaths in the portfolio N
and the standard Brownian motion W driving, among others, the mortality intensity will gener-
ally not be independent. Thus, we rely on the specific structure of the loss random variable –
and particularly the separation into discrete survival cash flows, continuous survival cash flows,
and continuous cash flows contingent on death – to reduce the problem to finding the martingale
representation of a G-martingale instead of an F-martingale. That is, we reduce the problem to a
diffusion setting, and we can then apply the Clark-Ocone formula to obtain the MRT decomposi-
tion of each summand of L defined in Equation (3) – and thus the MRT decomposition of L itself
by summing up the individual decompositions.

Proposition 3 Assume that n = d and that the inverse σ−1(t) =
(
σ−1
ij (t)

)
i,j=1,...,n

exists for all

t ∈ [0, T ∗] P-almost surely. Let 0 ≤ tk ≤ T ∗, 0 ≤ T ≤ T ∗.

1. (Financial cash flow) Let L = C0,T . If C0,T ∈ D1,2, then the unique integrands of the MRT

decomposition (5) of R = L− E(L) are given by:

ψWi (t) =
d∑
j=1

E (Dt,j (C0,T )| Gt)σ−1
ji (t), i = 1, . . . , n, ψN(t) = 0.

2. (Discrete survival cash flow) Let L = (m − N(tk))Ca,k. If e−Γ(tk)Ca,k ∈ D1,2, then the

unique integrands of the MRT decomposition (5) of R = L− E(L) are given by:

ψWi (t) =
[
(m−N(t−))eΓ(t)1[0,tk](t) + (m−N(tk))e

Γ(tk)1(tk,T ∗](t)
]

×
d∑
j=1

E
(
Dt,j

(
e−Γ(tk)Ca,k

)∣∣Gt)σ−1
ji (t), i = 1, . . . , n,

ψN(t) = −1[0,tk](t)E
(
eΓ(t)−Γ(tk)Ca,k

∣∣Gt) .
3. (Continuous survival cash flow) Let L =

∫ T
0

(m − N(t))Ca(t)dt. If Ca = (Ca(t))0≤t≤T is

a G-predictable process with E
(
supt∈[0,T ] |Ca(t)|

)
< ∞, supt∈[0,T ] E

(
[Ca(t)]

2) <∞, and

e−Γ(t)Ca(t) ∈ D1,2 for all t ∈ [0, T ], then the unique integrands of the MRT decomposition
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(5) of R = L− E(L) are given by:

ψWi (t) = 1[0,T ](t) (m−N(t−))eΓ(t) ×
d∑
j=1

∫ T

t

E
(
Dt,j

(
e−Γ(v)Ca(v)

)∣∣Gt) dv σ−1
ji (t),

i = 1, . . . , n,

ψN(t) = −1[0,T ](t)

∫ T

t

E
(
eΓ(t)−Γ(v)Ca(v)

∣∣Gt) dv.
4. (Continuous cash flow contingent on death) Let L =

∫ T
0
Cad(t)dN(t). If Cad =

(Cad(t))0≤t≤T is a continuous and G-predictable process with E
(
supt∈[0,T ] |Cad(t)|

)
< ∞,

supt∈[0,T ] E
(
[Cad(t)]

4) < ∞, supt∈[0,T ] E (µ4(t)) < ∞, and e−Γ(t)Cad(t)µ(t) ∈ D1,2 for all

t ∈ [0, T ], then the unique integrands of the MRT decomposition (5) of R = L − E(L) are

given by:

ψWi (t) = 1[0,T ](t) (m−N(t−))eΓ(t) ×
d∑
j=1

∫ T

t

E
(
Dt,j

(
e−Γ(v)Cad(v)µ(v)

)∣∣Gt) dv σ−1
ij (t),

i = 1, . . . , n,

ψN(t) = −1[0,T ](t)

[∫ T

t

E
(
eΓ(t)−Γ(v)Cad(v)µ(v)

∣∣Gt) dv − Cad(t)] .
Remark 4 A very similar problem arises in the context of (quadratic) hedging of insurance lia-

bilities, and a number of papers have taken a similar approach (Møller, 2001; Dahl and Møller,

2006; Barbarin, 2008; Dahl et al., 2008; Biagini et al., 2013; Biagini and Schreiber, 2013; Bi-

agini et al., 2016). We heavily rely on this line of research but present several extensions and new

adaptations. We refer to the E-Companion, Lemmas 3, 4, and 5 in the proof of Proposition 3 as

well as the corresponding Remark 6, for details on our technical contribution in this context.

In the important special case where the state process X is a Markov process and where insur-
ance payments are functions of the state variables, we are able to provide a more refined represen-
tation. More precisely, we can directly evaluate the decompositions via Itô’s lemma rather than
relying on Malliavin derivatives as in Proposition 3.

Proposition 4 Assume that n = d and that the state process X = ((X1(t), . . . , Xn(t))>)0≤t≤T ∗ is

an n-dimensional diffusion process satisfying:

dX(t) = θ(t,X(t))dt+ σ(t,X(t))dW (t) (7)
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with deterministic initial value X(0) = x0 ∈ Rn, where the drift vector θ : [0, T ∗]×Rn → Rn and

the volatility matrix σ : [0, T ∗] × Rn → Rn×n are continuous functions such that a unique strong

solution to (7) exists and det{σ(t,X(t))} 6= 0 for all t ∈ [0, T ∗] P-almost surely. Furthermore,

let T ∈ [0, T ∗] and let g : [0, T ] × Rn → R with
∫ T

0
|g(s,X(s))| ds < ∞ P-almost surely and

h : Rn → [0,∞) be some measurable functions.6

1. (Financial cash flow) Let L = C0,T . Assume that C0,T is square integrable and of

the form C0,T = e−
∫ T
0 g(s,X(s))dsh(X(T )). If f : [0, T ] × Rn → R, (t, x) 7→

E
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)

, is in C1,2((0, T )×Rn), then the unique integrands

of the MRT decomposition (5) of R = L− E(L) are given by:

ψWi (t) = 1[0,T ](t) e
−

∫ t
0 g(s,X(s))ds ∂f

∂xi
(t,X(t)), i = 1, . . . , n, ψN(t) = 0.

2. (Discrete survival cash flow) Let L = (m − N(tk))Ca,k, tk ∈ [0, T ∗]. Assume that Ca,k is

square integrable and of the form Ca,k = e−
∫ T
0 g(s,X(s))dsh(X(T )). Let tmin = min{tk, T}

and define:

fA : [0, tmin]× Rn→ R, (t, x) 7→ E
(
e−

∫ tk
t µ(s,X(s))dse−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
,

fB : [0, T ]× Rn→ R, (t, x) 7→ E
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣X(t) = x
)
,

fC : [0, tk]× Rn→ R, (t, x) 7→ E
(
e−

∫ tk
t µ(s,X(s))ds

∣∣∣X(t) = x
)
.

If fA ∈ C1,2((0, tmin)×Rn) and if in case tk < T additionally fB ∈ C1,2((0, T )×Rn) and

in case tk > T additionally fC ∈ C1,2((0, tk)×Rn), then the unique integrands of the MRT

decomposition (5) of R = L− E(L) are given by:

ψWi (t) = 1[0,tk](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds∂f

A

∂xi
(t,X(t))

+ 1(tmin,T ](t) (m−N(tk))e
−

∫ t
0 g(s,X(s))ds∂f

B

∂xi
(t,X(t))

+ 1(tmin,tk](t) (m−N(t−))Ca,k
∂fC

∂xi
(t,X(t)), i = 1, . . . , n,

ψN(t) = −1[0,T ](t) e
−

∫ t
0 g(s,X(s))dsfA(t,X(t))− 1(tmin,tk] Ca,k f

B(t,X(t)).

3. (Continuous survival cash flow) Let L =
∫ T

0
(m − N(t))Ca(t)dt. Assume that

Ca(t) is of the form Ca(t) = e−
∫ t
0 g(s,X(s))dsh(X(t)) with E

(
supt∈[0,T ] |Ca(t)|

)
<

6In what follows, we write f ∈ C1,2((0, T ) × Rn) for a function f : [0, T ] × Rn → R if the partial derivatives
∂f
∂t ,

∂f
∂xi

, ∂2f
∂xi∂xj

, 1 ≤ i, j ≤ n, exist and are continuous on (0, T )× Rn.
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∞ and supt∈[0,T ] E
(
[Ca(t)]

2) < ∞. If f v : [0, v] × Rn → R, (t, x) 7→
E
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))

∣∣X(t) = x
)
, is in C1,2((0, v) × Rn) for all v ∈ [0, T ],

then the unique integrands of the MRT decomposition (5) of R = L− E(L) are given by:

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

ψN(t) = −1[0,T ](t) e
−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv.

4. (Continuous cash flow contingent on death) Let L =
∫ T

0
Cad(t)dN(t). Assume that

(Cad(t))0≤t≤T is a continuous process of the form Cad(t) = e−
∫ t
0 g(s,X(s))dsh(X(t)) with

E
(
supt∈[0,T ] |Cad(t)|

)
< ∞, supt∈[0,T ] E

(
[Cad(t)]

4) < ∞, supt∈[0,T ] E (µ4(t)) < ∞. If

f v : [0, v]×Rn → R, (t, x) 7→ E
(
e−

∫ v
t [g(s,X(s))+µ(s,X(s))]dsh(X(v))µ(v,X(v))

∣∣X(t) = x
)
,

is in C1,2((0, v)× Rn) for all v ∈ [0, T ], then the unique integrands of the MRT decomposi-

tion (5) of R = L− E(L) are given by:

ψWi (t) = 1[0,T ](t) (m−N(t−))e−
∫ t
0 g(s,X(s))ds

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,

ψN(t) = −1[0,T ](t)

[
e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv − Cad(t)
]
.

To illustrate the above propositions and their relationship, we determine the MRT decomposi-
tion of a pure endowment portfolio in the following example.

Example 5 Consider a portfolio of m pure endowment policies with survival benefit 1 at time T

and single premium P0 at time 0. For simplicity, assume a zero interest rate, so that the insurer’s

time-0 loss equals L = −mP0 + (m − N(T )). The mortality intensity is assumed to be a non-

negative affine diffusion process:

dµ(t) = θ(t, µ(t)) dt+ σ(t, µ(t)) dW (t), µ(0) = µ0,

where (W (t))0≤t≤T ∗ is a one-dimensional standard Brownian motion, so that (Biffis, 2005):

E
(
e−

∫ T
t µ(s)ds

∣∣∣Gt) = eα(t)+β(t)µ(t), T ∈ (t, T ∗], (8)

where α and β satisfy certain Riccati ordinary differential equations.



DECOMPOSING DYNAMIC RISKS INTO RISK COMPONENTS 27

By applying part 2. of Proposition 3 to (m−N(T )) it follows that:

R = L− E (L)

=

∫ T

0

(m−N(t−))eΓ(t)E
(
Dt

(
e−Γ(T )

)∣∣Gt)
σ(t, µ(t))

dMW (t)−
∫ T

0

E
(
eΓ(t)−Γ(T )

∣∣Gt) dMN(t)

=

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t) dMW (t)−
∫ T

0

eα(t)+β(t)µ(t) dMN(t),

where we use the chain rule and the exchangeability of the conditional expectation and Malliavin

derivative operator for evaluating E
(
Dt

(
e−Γ(T )

)∣∣Gt) (see the E-Companion, Part B, for details).

Alternatively, we can apply Proposition 4, part 2. Obviously, the mortality intensity in this

setting is a one-dimensional diffusion process, and we have that Ca,1 = e−
∫ T
0 g(s,X(s))dsh(X(T ))

for g ≡ 0 and h ≡ 1, where t0 = 0 and t1 = T. The affine property of the mortality model yields:

E
(
e−

∫ T
t [µ(s,X(s))+g(s,X(s))]dsh(X(T ))

∣∣∣Gt)= E
(
e−

∫ T
t µ(s)ds

∣∣∣Gt)= eα(t)+β(t)µ(t) = fA(t, µ(t)),

so that again:

R = L− E (L) =

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t) dMW (t)−
∫ T

0

eα(t)+β(t)µ(t) dMN(t).

Note that here the first summand represents the systematic mortality risk and the second summand

the unsystematic mortality risk. In the next section, we show that the latter part vanishes as the

portfolio size grows.

3.4 Diversification properties

It is well known that unsystematic mortality risk arising from finite insurance portfolios vanishes
as the number of policyholders goes to infinity, i.e. it is diversifiable. In the next proposition,
we show that the risk component associated with unsystematic mortality risk within the MRT
decomposition also satisfies this property. On the one hand, this corroborates the adequacy of
the MRT decomposition, and, on the other hand, it allows for a crisp definition of unsystematic
(mortality) risk within an insurance payoff.

Proposition 5 Assume the setting and assumptions from Proposition 3 with resulting unsystematic
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mortality risks in part 2., 3., and 4. of, respectively:

R
(m)
n+1,ak = −

∫ tk

0

E
(
eΓ(t)−Γ(tk)Ca,k

∣∣Gt) dMN(t),

R
(m)
n+1,a = −

∫ T

0

∫ T

t

E
(
eΓ(t)−Γ(s)Ca(s)

∣∣Gt) ds dMN(t),

R
(m)
n+1,ad = −

∫ T

0

∫ T

t

[
E
(
eΓ(t)−Γ(s)Cad(s)µ(s)

∣∣Gt) ds− Cad(t)] dMN(t).

1. If Ca,k ∈ L4(P) and supt∈[0,tk] E (µ2(t)) <∞, then 1
m
R

(m)
n+1,ak

L2

−−−→
m→∞

0.

2. If supt∈[0,T ] E (µ2(t)) <∞ and Ca is bounded, then 1
m
R

(m)
n+1,a

L2

−−−→
m→∞

0.

3. If Cad is bounded, then 1
m
R

(m)
n+1,ad

L2

−−−→
m→∞

0.

While unsystematic mortality risk diversifies, Proposition 6 shows that the remaining risk com-
ponents also converge with the number of contracts, but in general not to zero, i.e. they are not

diversifiable. This confirms their interpretation as systematic risks, particularly since the limits no
longer depend on N(t). In applications, if the portfolio is sufficiently large, the limits can be used
as risk approximations.

Proposition 6 Assume the setting and assumptions from Proposition 3 with resulting systematic

risks in part 2., 3., and 4. of:

R
(m)
i, · =

∫ T

0

[
(m−N(t−))eΓ(t)1[0,tk](t) + (m−N(tk))e

Γ(tk)1(tk,T ](t)
] d∑
j=1

ϕj, ·(t)σ
−1
ji (t) dMW

i (t),

where 0 ≤ T ≤ T ∗, and for the different parts:

ϕj, ak(t) = E
(
Dt,j

(
e−Γ(tk)Ca,k

)∣∣Gt) (part 2.),

ϕj, a(t) =

∫ T

t

E
(
Dt,j

(
e−Γ(s)Ca(s)

)∣∣Gt) ds (part 3., where tk = T ),

ϕj, ad(t) =

∫ T

t

E
(
Dt,j

(
e−Γ(s)Cad(s)µ(s)

)∣∣Gt) ds (part 4., where tk = T ).

Then it follows for i = 1, . . . , n:

1

m
R

(m)
i, ·

P−−−→
m→∞

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t).
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The following corollary emphasizes that the limits of the considered risk components exactly
equal the risk components of the limit of the corresponding total risk, i.e. MRT decomposition and
limit can be interchanged.

Corollary 1 Assume the setting and assumptions from Proposition 3 with total risks in part 2., 3.,

and 4. of, respectively:

L
(m)
ak = (m−N(tk))Ca,k, L

(m)
a =

∫ T

0

(m−N(t))Ca(t)dt, L
(m)
ad =

∫ T

0

Cad(t)dN(t).

Then the following holds:

1.
1

m
L(m)
·

a.s.−−−→
m→∞

E
(
L(1)
·
∣∣GT ∗

)
.

2. Defining the MRT decompositions

• (L
(m)
· − E(L

(m)
· ), X1, . . . , Xn, N)

MRT↔ (R
(m)
1, · , . . . , R

(m)
n+1, ·), m ∈ N, and

• (E(L
(1)
· |GT ∗)− E(L

(1)
· ), X1, . . . , Xn, N)

MRT↔ (R∗1, ·, . . . , R
∗
n+1, ·),

and additionally assuming the respective assumptions of Proposition 5, then it follows for

i = 1, . . . , n+ 1:

1

m
R

(m)
i, ·

P−−−→
m→∞

R∗i, · .

4 Numerical example

In order to demonstrate the applicability and usefulness of the MRT decomposition, we derive the
fund (fund), interest (int), systematic (sys m), and unsystematic mortality (unsys m) risk compo-
nents of a return-of-premium GMDB within a variable annuity (VA). VAs are deferred, unit-linked
annuity contracts, and GMDBs are common embedded riders that guarantee a minimal amount
paid upon the policyholder’s death (see Bauer et al. (2008) for details on VAs with guarantees).
With nearly USD 2 trillion in net assets, VAs account for almost a quarter of the US insurance
industry’s total assets (Insurance Information Institute, 2017).

We assume that the VA is offered against a single premium P0 paid at time 0, which is fully
invested in a fund S = (S(t))0≤t≤T ∗ . If the policyholder dies during the deferment period [0, T ],
the GMDB guarantees that the death benefit paid at the end of the year of death equals at least
the single premium P0 (return of premium death benefit). We focus on the insurer’s risk from the
GMDB guarantee and assume that the company charges no fee for this embedded rider. Thus, the
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policyholder’s account value equals A(t) = P0
S(t)
S(0)

, t ∈ [0, T ], and if identical contracts are issued
to m homogeneous individuals, the total discounted loss of the insurance company is:

L =
T∑
k=1

(N(tk)−N(tk−1)) e−
∫ tk
0 r(s)ds max{P0 − A(tk), 0}, (9)

where r(t) denotes the time-t interest rate, and tk = k, k = 0, 1, . . . , T . Note that a single upfront
fee on top of P0 would not change R = L− E(L), thus leading to the same MRT decomposition.

We model the fund process as a geometric Brownian motion with drift µS and volatility σS:

dS(t) = µSS(t)dt+ σSS(t)dWS(t), S(0) > 0,

where WS = (WS(t))0≤t≤T ∗ denotes a P-Brownian motion. The short rate r = (r(t))0≤t≤T ∗ is
assumed to follow a positive Cox-Ingersoll-Ross (CIR) process:

dr(t) = κ(θ − r(t))dt+ σr
√
r(t)dWr(t), r(0) > 0,

where κ, θ, σr ∈ R, 2κθ ≥ σ2
r , and Wr = (Wr(t))0≤t≤T ∗ is a P-Brownian motion. Moreover,

following Dahl and Møller (2006), we assume that under P the mortality intensity process µ =

(µ(t))0≤t≤T ∗ follows a positive time-inhomogeneous CIR process:

dµ(t, a) = (γ(t, a)− δ(t, a)µ(t, a))dt+ σµ(t, a)
√
µ(t, a)dWµ(t), µ(0, a) = µ0(a),

where a denotes the policyholder’s age at time 0, Wµ = (Wµ(t))0≤t≤T ∗ is a P-Brownian motion,
the initial mortality intensities µ0(a + t) = b1 + b2 × ba+t

3 are assumed to follow the Gompertz-
Makeham mortality law, and:

γ(t, a) =
1

2
σ̂2µ0(a+ t), δ(t, a) = δ̂ −

∂
∂t
µ0(a+ t)

µ0(a+ t)
, σµ(t, a) = σ̂

√
µ0(a+ t),

for some deterministic parameters b1, b2, b3, δ̂, and σ̂. We consider a single age cohort, i.e. we fix
the initial age a, so that we no longer indicate the dependency on the age cohort but just write µ(t)

and σµ(t) etc. Since we assume thatWS, Wr, andWµ are independent, one-dimensional Brownian
motions, the volatility function of the process X = (S, r, µ)> is

σ(t, x) = diag{σSx1, σr
√
x2, σµ(t)

√
x3}.

Thus, it follows that det{σ(t, x)} 6= 0 for all t ∈ [0, T ∗] and all values x the process X(t), t ∈
[0, T ∗], assumes.
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Since X is a Markov process, we can rely on Proposition 4 to determine the MRT decomposi-
tion:

R = L− E(L) = Rfund +Rint +Rsys m +Runsys m

into fund (S), interest (r), systematic mortality (µ), and unsystematic mortality (N ) risk compo-
nents. More precisely, following Equation (4), we can represent the discrete death benefit guar-
antee payment as a difference of two discrete survival cash flows. The corresponding conditional
expectations have to be solved numerically, and we rely on Monte Carlo simulations to obtain the
distributions of the risk components. We refer to Part B of the E-Companion for details.

For the numerical calculations, we consider m = 100 and m = 10, 000 GMDB contracts with
maturity T = 15 and single premium P0 = 100,000. All policyholders are assumed to be a = 50

years old at time 0. For the mortality model, we adopt the parameter values for year 2003, case
II, males, from Tables 1 to 3 in Dahl and Møller (2006): b1 = 0.000134, b2 = 0.0000353, b3 =

1.1020, δ̂ = 0.008, and σ̂ = 0.02. For the interest model, we assume κ = 0.2, θ = 0.025, σr =

0.075, and r(0) = 0.0029. The parameters of the geometric Brownian motion are set to µS = 0.06

and σS = 0.22.

We focus on the distributions scaled by the number of policyholders in the portfolio and the
single premium, i.e. we consider R = 1

mP0
R, Ri = 1

mP0
Ri, i ∈ {fund, int, sys m, unsys m}.

The resulting empirical distribution functions of the total risk R and each of the risk components
for m = 100 are shown in Figure 1(a). We find that the distribution function of the fund risk
component is right-skewed while the distribution functions of all other risk components are ap-
proximately symmetric. Moreover, the plots indicate that the fund is the most relevant risk driver
since the distribution of the risk component closely resembles the distribution of the total risk. This
seems intuitive since the fund value determines whether and to what extent the GMDB guarantee
is in the money in case of death.

For m = 100 contracts, the randomness of the number of deaths within [0, T ], which trigger
possible payoffs, also seems to be rather high: the range of likely outcomes of the unsystematic
mortality risk component is rather wide compared to the ranges of the interest risk component
and the systematic mortality risk component. To further illustrate their relationship, we sort the
respective outcomes into equally spaced bins of size 0.0001 and plot the corresponding relative
frequencies in Figure 1(b). We observe that the tails of the interest risk are heavier than the tails of
the systematic mortality risk, but considerably lighter than the tails of the unsystematic mortality
risk.

The resulting decomposition can now be used to allocate risk capital as cast by a homogeneous
risk measure to the different risk sources via the so-called Euler principle. More precisely, for
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Figure 1: GMDB portfolio with m = 100 contracts – empirical distribution function and relative
frequencies using bins of size 0.0001

a homogeneous risk measure ρ and assuming differentiability, by Euler’s homogeneous function
theorem we can determine the risk capital contribution of the each risk source ri via:

ρ(R) =
∑

i∈{fund,int,sys m,unsys m}

∂ρ
(
afundRfund + aintRint + asys mRsys m + aunsys mRunsys m

)
∂ai

∣∣∣∣∣
ai=1︸ ︷︷ ︸

=ri

.

(10)

Table 2 provides results for three risk measures: standard deviation (Std. Dev.), value-at-risk
at the 99.5% level (VaR0.995), and tail-value-at-risk at the 99% level (TVaR0.99) for m = 100 and
m = 10, 000. For each risk measure, we report the total risk capital ρ(R) (per unit per contract)
as well as the risk contributions according to the Euler principle (absolute and as a percentage
of the sum of the four risk contributions), where we use finite difference approximations for the
derivatives in (10). As a result of the numerical approximations, we observe a (slightly) negative
contribution of unsystematic mortality risk under VaR and the allocated values do not perfectly
add up to the total risk capital ρ(R) – although the deviation is small (0.0008 for VaR).

The allocated risk contributions confirm our observations from the empirical distribution func-
tions and the relative frequencies. For m = 100, the fund risk makes up between about 73%

and 89% of the total risk capital, depending on the risk measure, whereas unsystematic mortality
risk is the second-most significant component accounting for between roughly 10% and 26%. For
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Capital Allocations

ρ ρ(R) rfund % rint % rsys m % runsys m %
(total) (fund) (interest) (syst. mort.) (unsyst. mort.)

m = 100

Std. Dev. 0.0179 0.0160 89.3% 0.0001 0.3% 0.0000 0.2% 0.0018 10.1%
VaR0.995 0.0780 0.0619 78.6% 0.0023 2.9% 0.0001 0.1% 0.0145 18.4%
TVaR0.99 0.0813 0.0592 72.9% 0.0008 1.0% 0.0004 0.5% 0.0208 25.6%

m = 10, 000

Std. Dev. 0.0169 0.0168 99.2% 0.0001 0.3% 0.0000 0.3% 0.0000 0.2%
VaR0.995 0.0660 0.0656 99.7% 0.0000 0.1% 0.0005 0.7% -0.0003 -0.5%
TVaR0.99 0.0680 0.0657 96.6% 0.0011 1.7% 0.0008 1.2% 0.0004 0.6%

Table 2: Total risk capital under different risk measures ρ and the corresponding Euler risk contri-
butions in absolute terms and relative to the sum of the four Euler risk contributions for the GMDB
portfolio

m = 10, 000, on the other hand, unsystematic mortality risk diversifies in line with our results from
Section 3.4, and fund risk is even more pronounced accounting for between 99.6% (under TVaR)
and even 99.7% (under VaR) of total capital. However, an important caveat is that fund risk may
be hedged, whereas at least for the systematic mortality risk hedging opportunities are scarce. We
leave the further exploration of risk decompositions of hedged positions for future research (for a
more detailed study in the context of annuity conversion options based on the methods presented
in this paper, see Schilling, 2017).

5 Conclusion

The present paper provides a detailed analysis of risk decomposition approaches. After discussing
a list of properties we posit a meaningful risk decomposition should satisfy, we propose a novel
MRT decomposition that satisfies all of these desirable properties – as opposed to other approaches
applied in the quantitative risk and insurance literature. We discuss its formal definition, calcula-
tion, and properties in a relatively general life insurance setting, and provide several examples for
illustration.

Key directions for future research include the generalization of the setting to a broader class
of driving processes and to settings beyond life insurance. While some extensions to other insur-
ance applications are underway (see e.g. Jetses (2018) for a generalization to multi-state insurance
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models and applications in health insurance), we believe our approach will also prove useful for
risk decomposition problems in other domains.
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E-Companion to “Dynamic Risks into Risk Components”
This E-Companion collects proofs of all the statements in the main text (Part A) and provides

details on the calculations in our examples (Part B).

A Proofs of Statements

Proof of Lemma 1

The first assertion follows from Lando (1998, p. 102), the second assertion follows from Bielecki
and Rutkowski (2004, p. 268), and the third assertion follows from Bielecki and Rutkowski (2004,
p. 145). �

Proof of Lemma 2

1. Since the drift vector θ is G-adapted with continuous paths, it follows that AWi is a pre-
dictable finite variation process. Since MW

i is a local martingale and Xi(t) = Xi(0) +

MW
i (t) + AWi (t) for all t ∈ [0, T ∗], AWi is a compensator of Xi. The uniqueness follows by

Theorem 34 in Protter (2005).

2. By the assumptions, AN is a predictable finite variation process and MN is a martingale (for
the latter, cf. Bielecki and Rutkowski, 2004, Proposition 5.1.3). Thus, AN is a compensator
of N and the uniqueness again follows by Theorem 34 in Protter (2005). �

Proof of Proposition 1

Applying the martingale representation theorem for point processes in combination with Brownian
motions (Björk, 2011, Theorem 4.1.2) to the martingaleM(t) = E

(
L−E(L)

∣∣FW,Nt

)
, 0 ≤ t ≤ T ∗,

together with the FW,NT ∗ -measurability of L, it follows that there exist FW,N -predictable processes
ψ̃W1 , . . . , ψ̃

W
d , ψ

N : [0, T ∗]× Ω→ R such that:

R = L− E(L) =

∫ T ∗

0

ψ̃W (t)dW (t) +

∫ T ∗

0

ψN(t)dMN(t), (11)

where ψ̃W = (ψ̃W1 , . . . , ψ̃
W
d ). Since n = d and detσ(t) 6= 0 by assumption, the inverse of σ,

denoted by σ−1, exists (and is unique). Thus, if ψWi (t) =
∑d

j=1 ψ̃
W
j (t)σ−1

ji (t), i = 1, . . . , n,

denotes the i-th entry of the vector ψ̃W (t)σ−1(t), the first summand of (11) can be transformed
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into: ∫ T ∗

0

ψ̃W (t)dW (t) =

∫ T ∗

0

ψ̃W (t)σ−1(t)σ(t)dW (t) =
n∑
i=1

∫ T ∗

0

ψWi (t)dMW
i (t),

which together with (11) proves the existence of the MRT decomposition (5).
Since 〈Wi,Wj〉(t) = 0 for all i 6= j, and 〈Wi,M

N〉(t) = 0 for i = 1, . . . , d, the Itô isometry
yields:

E
(
(L− E(L))2) =

d∑
i=1

E
((∫ T ∗

0

ψ̃Wi (t)dWi(t)

)2)
+ E

((∫ T ∗

0

ψN(t)dMN(t)

)2)
.

Thus, by the square integrability of L, all integrals in (11) are square integrable, and in particular
(6) holds.

To show uniqueness, suppose there exist FW,N -predictable processes ξ̃W1 , . . . , ξ̃Wd , ξ
N : [0, T ∗]×

Ω→ R such that:

L− E(L) =

∫ T ∗

0

ξ̃W (t)dW (t) +

∫ T ∗

0

ξN(t)dMN(t).

Then we have
∫ T ∗

0

(
ψ̃W (t) − ξ̃W (t)

)
dW (t) +

∫ T ∗

0

(
ψN(t)− ξN(t)

)
dMN(t) = 0. From An-

dersen et al. (1997, p. 78), we know that the predictable quadratic variation of MN(t) equals
〈MN ,MN〉(t) =

∫ t
0
(m−N(s−))µ(s)ds. Together with the Itô isometry, we thus obtain:

0 =
d∑
i=1

E
(∫ T ∗

0

(
ψ̃Wi (t)− ξ̃Wi (t)

)2
dt

)
+ E

(∫ T ∗

0

(
ψN(t)− ξN(t)

)2
(m−N(t−))µ(t)dt

)
.

Since µ is assumed to be positive, it directly follows that ψ̃Wi = ξ̃Wi λ ⊗ P-almost surely, i =

1, . . . , d, and that ψN = ξN on {(t, ω) ∈ [0, T ∗]× Ω : N(t−) < m} with respect to λ ⊗ P. Fi-
nally, the uniqueness of ψW1 , . . . , ψ

W
n , ψ

N is a result of the uniqueness of ψ̃W1 , . . . , ψ̃
W
n , ψ

N and the
uniqueness of the inverse of σ. �

Proof of Proposition 2

Obviously, the risk components R1, . . . , Rn+1 are random variables, and R =
∑n+1

i=1 Ri, so that
P1 and P6∗ (and thus also P6) are satisfied. The uniqueness property P3 directly follows from
Proposition 1 and the fact that ∆MN(t) = 0 on {(t, ω) ∈ [0, T ∗]× Ω : N(t−) = m} .

To simplify the proof of the remaining properties, let ψi = ψWi , Mi = MW
i , i = 1, . . . , n,

and ψn+1 = ψN , Mn+1 = MN . Furthermore, we write Z = (Z1, . . . , Zn+1) = (X1, . . . , Xn, N).
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Assume that (R,Z1, . . . , Zn+1)
MRT↔ (R1, . . . , Rn+1).

P2: Let i ∈ {1, . . . , n + 1}. Assume that R is σ(Zi)-measurable and that Zi is independent of
Zi− = (Z1, . . . , Zi−1, Zi+1, . . . , Zn+1). This directly implies that R is independent of Zi−.
Furthermore, since detσ(t) 6= 0 for all t ∈ [0, T ∗] P-almost surely, we have FW,Nt = FZt =

FZit ∨F
Zi−
t ,where FZ = (FZt )0≤t≤T ∗ , FZi = (FZit )0≤t≤T ∗ , and FZi− = (FZi−t )0≤t≤T ∗ denote

the augmented filtrations generated by Z, Zi, and Zi−, respectively. Thus:

R(t) =
n+1∑
j=1

∫ t

0

ψj(s)dMj(s) = E
(
R
∣∣∣FW,Nt

)
= E

(
R
∣∣∣FZit ∨ FZi−t

)
= E

(
R
∣∣FZit ) .

This implies that the process (R(t))0≤t≤T ∗ is independent of each process Zj, j 6= i, so that
the predictable covariation process satisfies 〈R,Zj〉(t) = 0 for all j 6= i, 0 ≤ t ≤ T ∗.

(a) Assume that i = n+ 1. Then 〈Mi, Zj〉(t) = 〈MN , Xj〉(t) = 0 for all j 6= i, so that:

0 = d 〈R,Zj〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zj〉 (t) =
n∑
k=1

ψk(t)d 〈Mk, Zj〉 (t)

=
n∑
k=1

ψk(t)σk,·(t)σ
>
j,·(t)dt, j 6= i, 0 ≤ t ≤ T ∗,

(12)

where σk,·(t) denotes the k-th row of σ(t). For any 0 ≤ t ≤ T ∗, this yields the linear
system of equations A>t ψt = 0, where ψt = (ψ1(t), . . . , ψn(t))> and At = σ(t)σ(t)>,

so that detA>t = (detσ(t))2 6= 0 for all t ∈ [0, T ∗] P-almost surely, implying ψt = 0

for all t ∈ [0, T ∗] P-almost surely. Thus, we have Rj =
∫ T ∗

0
ψj(t)dMj(t) = 0 almost

surely for all j 6= i.

(b) Now assume that i 6= n+ 1 (w.l.o.g. i = 1). Then we know that:

0 = d 〈R,Zn+1〉 (t) =
n+1∑
k=1

ψk(t)d 〈Mk, Zn+1〉 (t) = ψn+1(t)d 〈Mn+1, Zn+1〉 (t)

= ψn+1(t)d 〈Mn+1,Mn+1〉 (t),

so by the Itô isometry it follows that:

E

([∫ T ∗

0

ψn+1(t)dMn+1(t)

]2
)

= E
(∫ T ∗

0

ψ2
n+1(t)d 〈Mn+1,Mn+1〉 (t)

)
= 0,

and thus Rn+1 =
∫ T ∗

0
ψn+1(t)dMn+1(t) = 0 almost surely.
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Since Z1 is by assumption independent of Z1− and thus independent of Zj for all j =

2, . . . , n+ 1, it follows that σ1,·(t)σj,·(t)
>dt = d〈Z1, Zj〉(t) = 0 for all j /∈ {1, n+ 1}.

Thus, for At = σ(t)σ(t)>, we obtain:

At =


σ1,·(t)σ1,·(t)

> 0 . . . 0

0
... Ãt

0

 , Ãt =


σ2,·(t)σ2,·(t)

> . . . σ2,·(t)σn,·(t)
>

...
...

σn,·(t)σ2,·(t)
> . . . σn,·(t)σn,·(t)

>

 ,

and since 0 6= detAt = σ1,·(t)σ1,·(t)
>det Ãt, det Ãt 6= 0 for all t ∈ [0, T ∗] P-almost

surely. Furthermore, following the same calculation steps as in (12) for j /∈ {1, n+ 1}
and using 〈M1, Zj〉 (t) = d 〈Z1, Zj〉 (t) = 0 and 〈Mn+1, Zj〉 (t) = 0, j /∈ {1, n+1},we
obtain the linear system Ã>t ψ̃t = 0, where ψ̃t = (ψ2(t), . . . , ψn(t))>. Since det Ãt 6= 0

for all t ∈ [0, T ∗] P-almost surely, it follows that ψ̃t = 0 for all t ∈ [0, T ∗] P-almost
surely, and thus Rj =

∫ T ∗

0
ψj(t)dMj(t) = 0 almost surely for all j /∈ {1, n+ 1}.

P4: Consider a permutation π : {1, . . . , n+1} → {1, . . . , n+1}. Let (R,Zπ(1), . . . , Zπ(n+1))
MRT↔

(R̃1, . . . , R̃n+1) with R̃i =
∫ T ∗

0
ψ̃i(t)dMπ(i)(t) for i = 1, . . . , n + 1, where ψ̃i are F-

predictable processes. Since:

n+1∑
i=1

∫ T ∗

0

ψ̃i(t)dMπ(i)(t) =
n+1∑
i=1

R̃i
P6∗
= R

P6∗
=

n+1∑
i=1

Ri =
n+1∑
i=1

∫ T ∗

0

ψi(t)dMi(t)

=
n+1∑
i=1

∫ T ∗

0

ψπ(i)(t)dMπ(i)(t),

P4 follows by the uniqueness of the MRT decomposition.

P5: Let Z̃i(t) = fi(Zi(t)), i = 1, . . . , n + 1, where the functions fi : R → R are smooth and
invertible, and consider (R, Z̃1, . . . , Z̃n+1)

MRT↔ (R̃1, . . . , R̃n+1).

For each i 6= n+ 1, we have by Itô’s lemma:

dZ̃i(t) = f ′i(Xi(t))
d∑
j=1

σij(t)dWj(t) +

(
f ′i(Xi(t))θ(t) +

1

2
f ′′i (Xi(t))

d∑
j=1

σ2
ij(t)

)
dt.

Thus, (Z̃1, . . . , Z̃n) is again an Itô process as in Assumption 1 and by Lemma 2 the corre-
sponding compensated risk processes equal:

M̃i(t) = f ′i(Xi(t))dMi(t), i = 1, . . . , n.
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As a result, for i = 1, . . . , n, the MRT risk components equal:

R̃i =

∫ T ∗

0

ψ̃i(t)dM̃i(t) =

∫ T ∗

0

ψ̃i(t)f
′
i(Xi(t))dMi(t). (13)

For i = n+ 1, we have:

Z̃n+1(t) = fn+1(N(0)) +
∑

0<s≤t

(fn+1(N(s))− fn+1(N(s−)))

= fn+1(N(0)) +
∑

0<s≤t

[
m∑
k=0

1{N(s−)=k} (fn+1(k + 1)− fn+1(k))

]
︸ ︷︷ ︸

= a(s)

(N(s)−N(s−))

= fn+1(N(0)) +

∫ t

0

a(s)dN(s)

= fn+1(N(0)) +

∫ t

0

a(s)dMn+1(s) +

∫ t

0

a(s)(m−N(s−))µ(s)ds,

exploiting in the second equality that P(τ ix = τ jx) = 0 for i 6= j (Bielecki and Rutkowski,
2004, p. 269). Since a(s) 6= 0 (invertible) and predictable, Ãn+1(t) =

∫ t
0
a(s)(m−N(s−))µ(s)ds

is a predictable finite variation process and M̃n+1(t) =
∫ t

0
a(s)dMn+1(s) is a local martin-

gale. Thus:

R̃n+1 =

∫ T ∗

0

ψ̃n+1(t)dM̃n+1(t) =

∫ T ∗

0

ψ̃n+1(t)a(t)dMn+1(t). (14)

The uniqueness of the MRT decomposition together with (13) and (14) implies that Ri = R̃i

almost surely, i = 1, . . . , n+ 1, and thus P5. �

Remark 5 While the MRT decomposition in (5) is formally defined in terms of the Itô process X

and the counting process N, in the proof of P5 we consider a generalized notion in terms of an Itô

process and the jump process
∫ ·

0
a(s)dN(s). However, since the generalization is straightforward

and to keep the presentation in Section 3 concise, we accept this slight inconsistency.

Proof of Proposition 3

The proof relies on three lemmas that, while building on previous literature, present new results on
martingale representation of life insurance payment processes (see Remark 6 below for details).

Lemma 3 (Discrete survival cash flow) LetZ be a random variable of the formZ = (m−N(T ))F,

T ∈ [0, T ∗], where F is GT ∗-measurable and integrable. Then there exist G-predictable processes
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ϕ1, . . . , ϕd such that:

E
(
e−Γ(T )F

∣∣Gt) = E
(
e−Γ(T )F

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), t ≤ T ∗, (15)

and the martingale representation of Z is given by:

Z = E(Z) +
d∑
i=1

∫ T ∗

0

[
(m−N(t−)) eΓ(t)1[0,T ](t) + (m−N(T )) eΓ(T )1(T,T ∗](t)

]
ϕi(t)dWi(t)

−
∫ T

0

E
(
eΓ(t)−Γ(T )F

∣∣Gt) dMN(t). (16)

Proof of Lemma 3

Since U = (U(t))0≤t≤T ∗ with U(t) = E
(
e−Γ(T )F

∣∣Gt) is a G-martingale, it follows by the martin-
gale representation theorem that there exist predictable processes ϕ1, . . . , ϕd such that (15) holds.

We first show the lemma for a single policyholder with remaining lifetime τ ix, i.e. m = 1

and F = G ∨ Ii for some arbitrary but fixed i ∈ {1, . . . ,m}. Define Li(t) = 1{τ ix>t}e
Γ(t) and

L̃i(t) = E (Li(T )| Ft) . Since Li(t) is an F-martingale (Bielecki and Rutkowski, 2004, p. 152), it
follows that L̃i(t) = Li(t) for t ≤ T and L̃i(t) = Li(T ) for t ≥ T. Furthermore, U(T ∗) = e−Γ(T )F,

which implies Zi = 1{τ ix>T}F = L̃i(T
∗)U(T ∗). Thus, applying the Itô integration by parts formula

(Protter, 2005, p. 68) to the product L̃i(t)U(t) and considering the continuity of U(t) yields:

Zi = L̃i(0)U(0) +

∫ T ∗

0

L̃i(t−)dU(t) +

∫ T ∗

0

U(t)dL̃i(t) + [L̃i, U ](T ∗)

= Li(0)U(0) +

∫ T ∗

0

[
Li(t−)1[0,T ](t) + Li(T )1(T,T ∗](t)

]
dU(t) +

∫ T

0

U(t)dLi(t) + [Li, U ](T ),

(17)

where the second equality follows from the definition of L̃i. Using 1{τ ix>0} = 1 a.s. (which follows
from the assumptions on µ), 2 in Lemma 1, and the GT ∗-measurability of F, we have that:

Li(0)U(0)
a.s.
= E

(
e−Γ(T )F

)
= E

(
E
(

1{τ ix>T}
∣∣GT ∗

)
F
)

= E
(
1{τ ix>T}F

)
= E(Zi).

Also note that:

MN
i (t) = 1{τ ix≤t} −

∫ t

0

1{τ ix>s−}µ(s)ds = 1{τ ix≤t} −
∫ t∧τ ix

0

µ(s)ds.

Thus, since the G-adapted cumulative mortality intensity Γ of τ ix is continuous and increasing,
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Proposition 5.1.3 i) in Bielecki and Rutkowski (2004) implies that:

dLi(t) = −Li(t−)dMN
i (t).

Plugging in the definitions of Li and MN
i , this can be further written as:

dLi(t) = −eΓ(t)
(
1{τ ix>t−}d1{τ ix≤t} − 1{τ ix>t−}1{τ ix>t}µ(t)dt

)
= −eΓ(t)dMN

i (t).

Moreover, [Li, U ](t) = 0 for every t ∈ [0, T ∗] (Bielecki and Rutkowski, 2004, p. 160). Thus, using
the martingale representation of U(t), equation (17) becomes:

Zi = E(Zi) +
d∑
j=1

∫ T ∗

0

[
Li(t−)1[0,T ](t) + Li(T )1(T,T ∗](t)

]
ϕj(t)dWj(t)−

∫ T

0

U(t)eΓ(t)dMN
i (t).

Together with the continuity and adaptedness of µ, this proves the statement of the proposition for
any single policyholder.

In the portfolio case, where F = G ∨
∨m
i=1 Ii, the conditional independence of the τ ix’s im-

plies that E (Zi| Ft) = E (Zi| Gt ∨ I it) . Thus, by using the conditionally identical distribution
of τ ix, i = 1, . . . ,m, the proposition follows for the entire portfolio from applying the previous
part of the proof to each summand of Z =

∑m
i=1 1{τ ix>T}F separately and adding the respective

decompositions. �

Lemma 4 (Continuous survival cash flow) Let Z be a random variable of the form Z =∫ T
0

(m − N(v))F (v)dv, T ∈ [0, T ∗], where F = (F (t))0≤t≤T is a G-predictable process with

E
(
supt∈[0,T ] |F (t)|

)
<∞. Then there exist G-predictable processes ϕ1, . . . , ϕd such that:

E
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) = E
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), t ≤ T, (18)

and the martingale representation of Z is given by:

Z = E(Z) +
d∑
i=1

∫ T

0

(m−N(t−))eΓ(t)ϕi(t)dWi(t)−
∫ T

0

∫ T

t

E
(
eΓ(t)−Γ(v)F (v)

∣∣Gt) dv dMN(t).

(19)

In particular, if additionally supt∈[0,T ] E
(
[F (t)]2

)
<∞, then:

ϕi(t) =

∫ T

t

ϕvi (t)dv, t ≤ T, (20)
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where ϕvi , i = 1, . . . , d, v ∈ [0, T ], are the G-predictable integrands of the martingale represen-

tation of e−Γ(v)F (v) (cf. (15)).

Proof of Lemma 4

To begin with, note that by the martingale representation theorem, there exist predictable processes
ϕ1, . . . , ϕd such that (18) holds. Again, we first show the statement for a single policyholder with
remaining lifetime τ ix, i.e.m = 1 and F = G∨Ii for an arbitrary but fixed i ∈ {1, . . . ,m}. Since F
is assumed to be G-predictable with E

(
supt∈[0,T ] |F (t)|

)
< ∞, it follows from Proposition 5.1.2

in Bielecki and Rutkowski (2004) that:

E
(∫ T

0

1{τ ix>v}F (v)dv

∣∣∣∣Ft)
=

∫ t

0

1{τ ix>v}F (v)dv + Li(t)E
(∫ T

t

e−Γ(v)F (v)dv

∣∣∣∣Gt)
=

∫ t

0

1{τ ix>v}F (v)dv − Li(t)
∫ t

0

e−Γ(v)F (v)dv + Li(t)E
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) , (21)

where Li(t) = 1{τ ix>t}e
Γ(t). Note that Proposition 5.1.2 in Bielecki and Rutkowski (2004) actually

requires
∫ T

0
F (v)dv to be bounded. However, via dominated convergence it can be shown that the

result still holds if F satisfies E
(
supt∈[0,T ] |F (t)|

)
< ∞ (Biagini et al., 2016, p. 22, already point

out a possible relaxation to E
(
supt∈[0,T ] |F (t)|2

)
<∞). As in the proof of Lemma 3, it follows by

applying integration by parts that:

Li(t)

∫ t

0

e−Γ(v)F (v)dv =

∫ t

0

1{τ ix>s−}F (s)ds−
∫ t

0

(∫ s

0

e−Γ(v)F (v)dv

)
eΓ(s)dMN

i (s)

and:

Li(t)E
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) = E
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

1{τ ix>s−}e
Γ(s)ϕi(s)dWi(s)

−
∫ t

0

E
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gs) eΓ(s)dMN
i (s),
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where MN
i (t) = 1{τ ix≤t} −

∫ t
0

1{τ ix>s−}µ(s)ds. Summing up the representations of all summands
from (21) and using the FT -measurability of

∫ T
0

1{τ ix>v}F (v)dv, we obtain:

∫ T

0

1{τ ix>v}F (v)dv = E
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ T

0

1{τ ix>t−}e
Γ(t)ϕi(t)dWi(t)

−
∫ T

0

E
(∫ T

t

eΓ(t)−Γ(v)F (v)dv

∣∣∣∣Gt) dMN
i (t).

(22)

Since we assume that E
(
supt∈[0,T ] |F (t)|

)
< ∞, the theorem of Fubini-Tonelli together with the

construction of τ ix implies that:

E
(∫ T

0

e−Γ(v)F (v)dv

)
= E

(∫ T

0

1{τ ix>v}F (v)dv

)
,

and the theorem of Fubini-Tonelli for conditional expectations yields:∫ T

0

E
(∫ T

t

eΓ(t)−Γ(v)F (v)dv

∣∣∣∣Gt) dMN
i (t) =

∫ T

0

∫ T

t

E
(
eΓ(t)−Γ(v)F (v)

∣∣Gt) dv dMN
i (t),

so that (19) follows from (22).
Next we prove (20). By the martingale representation theorem, there exist for every v ∈ [0, T ]

G-predictable processes ϕv1, . . . , ϕ
v
d such that:

E
(
e−Γ(v)F (v)

∣∣Gt) = E
(
e−Γ(v)F (v)

)
+

d∑
i=1

∫ t

0

ϕvi (u)1[0,v](u)dWi(u), t ∈ [0, T ].

Thus, using the theorem of Fubini-Tonelli and the stochastic Fubini theorem (Protter, 2005, Theo-
rem 65), it follows that:

E
(∫ T

0

e−Γ(v)F (v)dv

∣∣∣∣Gt) =

∫ T

0

E
(
e−Γ(v)F (v)

∣∣Gt) dv
=

∫ T

0

E
(
e−Γ(v)F (v)

)
dv +

d∑
i=1

∫ T

0

∫ t

0

ϕvi (u)1[0,v](u)dWi(u) dv

= E
(∫ T

0

e−Γ(v)F (v)dv

)
+

d∑
i=1

∫ t

0

∫ T

0

ϕvi (u)1[0,v](u)dv dWi(u),
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where for applying the stochastic Fubini theorem it is sufficient to note that:

E
(∫ t

0

∫ T

0

[ϕvi (u)]2 1[0,v](u)dv du

)
≤
∫ T

0

E
(∫ T

0

[ϕvi (u)]2 1[0,v](u)du

)
dv

≤ T sup
v∈[0,T ]

E
(∫ T

0

[ϕvi (u)]2 1[0,v](u)du

)
≤ T sup

v∈[0,T ]

E
([
e−Γ(v)F (v)

]2)
≤ T sup

v∈[0,T ]

E
(
[F (v)]2

)
<∞.

The uniqueness of the martingale representation finally implies (20).
By the conditional independence assumption on τ ix, i = 1, . . . ,m,we have in the portfolio case

with F = G ∨
∨m
i=1 Ii that E

(∫ T
0

1{τ ix>v}F (v)dv
∣∣∣Ft) = E

(∫ T
0

1{τ ix>v}F (v)dv
∣∣∣Gt ∨ I it) . Thus,

the statement for the portfolio directly follows by applying the obtained equation to each summand∫ T
0

1{τ ix>v}F (v)dv, i = 1, . . . ,m, separately and adding the respective decompositions. �

Lemma 5 (Continuous cash flow contingent on death) Let Z be a random variable of the form

Z =
∫ T

0
F (v)dN(v), T ∈ [0, T ∗], where F = (F (t))0≤t≤T is a continuous and G-predictable

process with E
(
supt∈[0,T ] |F (t)|

)
<∞. Then there exist G-predictable processes ϕ1, . . . , ϕd such

that for t ≤ T :

E
(∫ T

0

e−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt) = E
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
+

d∑
i=1

∫ t

0

ϕi(u)dWi(u), (23)

and the martingale representation of Z is given by:

Z = E(Z) +
d∑
i=1

∫ T

0

(m−N(t−)) eΓ(t)ϕi(t)dWi(t)

−
∫ T

0

[∫ T

t

E
(
eΓ(t)−Γ(v)F (v)µ(v)

∣∣Gt) dv − F (t)

]
dMN(t).

(24)

In particular, if additionally supt∈[0,T ] E
(
[F (t)]4

)
<∞ and supt∈[0,T ] E (µ4(t)) <∞, then:

ϕi(t) =

∫ T

t

ϕvi (t)dv, t ≤ T, (25)

where ϕvi , i = 1, . . . , d, v ∈ [0, T ], are the G-predictable integrands of the martingale represen-

tation of e−Γ(v)F (v)µ(v) (cf. (15)).
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Proof of Lemma 5

To begin with, note that by the martingale representation theorem, there exist predictable processes
ϕ1, . . . , ϕd such that (23) holds. Since F is continuous, it follows from the definition of Lebesgue
integrals that:

Z =

∫ T

0

F (v)dN(v) =
m∑
i=1

1{τ ix≤T}F (τ ix). (26)

Again, we first show the statement for a single policyholder with remaining lifetime τ ix, i.e. m = 1

and F = G∨ Ii for an arbitrary but fixed i ∈ {1, . . . ,m}. Note that 1{τ ix≤t}F (τ ix) is Ft-measurable,
so that:

E
(

1{τ ix≤T}F (τ ix)
∣∣Ft) = E

(
1{t<τ ix≤T}F (τ ix)

∣∣Ft)+ 1{τ ix≤t}F (τ ix). (27)

Since F is assumed to be G-predictable with E
(
supt∈[0,T ] |F (t)|

)
<∞, it follows from Corollary

5.1.3 in Bielecki and Rutkowski (2004) that:

E
(

1{t<τ ix≤T}F (τ ix)
∣∣Ft) = 1{τ ix>t} E

(∫ T

t

eΓ(t)−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt)
= Li(t)E

(∫ T

0

e−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt)− Li(t)∫ t

0

e−Γ(v)F (v)dΓ(v),

where Li(t) = 1{τ ix>t}e
Γ(t). Again, Proposition 5.1.1 and thus Corollary 5.1.3 in Bielecki and

Rutkowski (2004) actually require F to be bounded, but a generalization to non-bounded F sat-
isfying E

(
supt∈[0,T ] |F (t)|

)
< ∞ can be shown via dominated convergence (Biagini et al., 2016,

p. 19, already point out a possible relaxation to E
(
supt∈[0,T ] |F (t)|2

)
<∞). As in the proof of

Lemma 3, it then follows by applying integration by parts to both addends that:

E
(

1{t<τ ix≤T}F (τ ix)
∣∣Ft)

= E
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
+

d∑
i=1

∫ t

0

1{τ ix>s−}e
Γ(s)ϕi(s)dWi(s)

−
∫ t

0

E
(∫ T

s

eΓ(s)−Γ(v)F (v)dΓ(v)

∣∣∣∣Gs) dMN
i (s)−

∫ t

0

1{τ ix>s}F (s)dΓ(s),

where MN
i (t) = 1{τ ix≤t} −

∫ t
0

1{τ ix>s−}µ(s)ds. On the other hand, we obtain by (26) that:

1{τ ix≤t}F (τ ix) =

∫ t

0

F (s)d1{τ ix≤s} =

∫ t

0

F (s)dMN
i (s) +

∫ t

0

F (s)1{τ ix>s}dΓ(s).
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Summing up the representations of the two summands in (27) and using the FT -measurability of
1{τ ix≤T}F (τ ix), we obtain:

1{τ ix≤T}F (τ ix) = E
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
+

d∑
i=1

∫ T

0

1{τ ix>t−}e
Γ(t)ϕi(t)dWi(t)

−
∫ T

0

[
E
(∫ T

t

eΓ(t)−Γ(v)F (v)dΓ(v)

∣∣∣∣Gt)− F (t)

]
dMN

i (t).

(28)

Corollary 5.1.3 in Bielecki and Rutkowski (2004) implies that:

E
(∫ T

0

e−Γ(v)F (v)dΓ(v)

)
= E

(
1{τ ix≤T}F (τ ix)

)
,

and since E
(∫ T

t
|F (v)| eΓ(t)−Γ(v)µ(v)dv

)
≤ E

(
supv∈[0,T ] |F (v)|

)
< ∞, the theorem of Fubini-

Tonelli for conditional expectations yields:

E
(∫ T

t

F (v)eΓ(t)−Γ(v)dΓ(v)

∣∣∣∣Gt) =

∫ T

t

E
(
F (v)eΓ(t)−Γ(v)µ(v)

∣∣Gt) dv,
so that (24) follows from (28). The proof of (25) works analogously to the proof of (20), addition-
ally using the Cauchy-Schwarz inequality.

By the conditional independence assumption on τ ix, i = 1, . . . ,m, we have in the portfolio
case with F = G ∨

∨m
i=1 Ii that E

(
1{τ ix≤T}F (τ ix)

∣∣Ft) = E
(

1{τ ix≤T}F (τ ix)
∣∣Gt ∨ I it) . Thus, the

statement for the portfolio directly follows by applying the obtained equation to each summand
1{τ ix≤t}F (τ ix), i = 1, . . . ,m, separately and adding the respective decompositions. �

Remark 6 As mentioned in Remark 4, the above lemmas are closely related to (quadratic) hedging

of insurance liabilities, and we heavily rely on this line of research. Specifically, for a single

policyholder, the proof of Lemma 3 mainly follows the ideas of the proof of Proposition 5.2.2 in

Bielecki and Rutkowski (2004), albeit we modify their result so that it fits our later application and

extend it to an entire (homogeneous) portfolio. For F GT -measurable instead of (more generally)

GT ∗-measurable, similar results (usually in a specific process setting) have been derived in the

context of quadratic hedging strategies, see e.g. Barbarin (2008, Prop. 4.10, Prop. 5.11), Biagini

et al. (2016, Prop. 3.5), Biagini et al. (2013, Prop. 2, Prop. 9), and Biagini and Schreiber (2013,

Lemma 4.2). Most of them also consider entire portfolios. For Lemma 4, except for some details,

the proof of the first part (19) mainly follows the proof of Proposition 4.12 in Barbarin (2008). The

specification (20) may simplify the derivation of (18). For bounded F, it has already been shown

in Biagini et al. (2013, Proposition 5). For Lemma 5, the proof of the first part (24) relies on a

generalization of Proposition 4.11 in Barbarin (2008) and Proposition 4 in Biagini et al. (2013).
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Similar results were independently derived in Section 3.3 of Biagini et al. (2016) and in Section 4

of Biagini and Schreiber (2013). We added the specification (25) in analogy to (20).

Returning to the main proof, the integrands in Proposition 3 follow directly from Lemma 3,
Lemma 4, and Lemma 5 together with the Clark-Ocone formula (Di Nunno et al., 2009, p. 196)
and the proof of Proposition 1. Since each L is square integrable as a result of the respective
assumptions, the uniqueness follows from Proposition 2. �

Proof of Proposition 4

Since n = d, detσ(t,X(t)) 6= 0 for all t ∈ [0, T ∗] P-almost surely, and each L is square integrable
as a result of the respective assumptions, the uniqueness of the decompositions follows by Propo-
sition 2. Furthermore, the assumptions imply that X is a Markov process, which together with the
factorization lemma yields for all cases i) to iv) below that:

E ( ·| Gt) = E ( ·|X(t)) (29)

is a function of X(t). Define G(t) =
∫ t

0
g(s,X(s))ds, 0 ≤ t ≤ T, and note that (Shreve, 2004,

p. 480):

d[G,G](t) = d[G,Γ](t) = d[Γ,Γ](t) = d[G,Xi](t) = d[Γ, Xi](t) = 0. (30)

1. The assumption on the form of C0,T together with (29) yields that:

E (C0,T | Gt) = e−G(t)E
(
e−

∫ T
t g(s,X(s))dsh(X(T ))

∣∣∣Gt) = e−G(t)f(t,X(t))

= f̃(t, G(t), X(t)).

Since f is assumed to be smooth, this holds for f̃ as well. Thus, Itô’s lemma yields for
0 ≤ t ≤ T (Protter, 2005, Theorem 33):

E (C0,T | Gt)− E (C0,T ) =
n∑
i=1

∫ t

0

e−G(s) ∂f

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (30) and that
(t, G(t), X(t)) has continuous paths. The right-hand side E (C0,T | Gt) − E (C0,T ) is a mar-
tingale. On the other hand, the stochastic integrals with respect to MW

i , i = 1, . . . , n, are
martingales as well. Thus, it follows by the uniqueness of the Doob-Meyer decomposition
(Protter, 2005, Theorem 16) that the ds-term vanishes. Since C0,T is GT -measurable, the
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statement follows.

2. We consider the two cases T > tk and T ≤ tk separately. Together they yield the result. In
both cases, T > tk and T ≤ tk, we derive the MRT decomposition with the help of Lemma
3. For this, we determine the martingale representation of e−Γ(tk)Ca,k less its expectation.

(a) If T > tk, we consider the decomposition:

e−Γ(tk)Ca,k − E
(
e−Γ(tk)Ca,k

)
=
[
e−Γ(tk)E (Ca,k| Gtk)− E

(
e−Γ(tk)Ca,k

)]
+ e−Γ(tk) [Ca,k − E (Ca,k| Gtk)],

(31)

and derive the martingale representations of the two parts separately. The assumption
on the form of Ca,k together with (29) yield for 0 ≤ t ≤ tk that:

E
(
e−Γ(tk)E (Ca,k| Gtk)

∣∣Gt) = e−Γ(t)e−G(t)E
(
eΓ(t)−Γ(tk)eG(t)−G(T )h(X(T ))

∣∣Gt)
= e−Γ(t)e−G(t)fA(t,X(t))

= f̃A(t,Γ(t), G(t), X(t)).

Since fA is assumed to be smooth, this holds for f̃A as well. Thus, Itô’s formula yields
for 0 ≤ t ≤ tk (Protter, 2005, Theorem 33):

E
(
e−Γ(tk)E (Ca,k| Gtk)

∣∣Gt)− E
(
e−Γ(tk)E (Ca,k| Gtk)

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (30) and that
(t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments as in i) the ds-term
vanishes, and since e−Γ(tk)E (Ca,k| Gtk) is Gtk-measurable, it follows that:

e−Γ(tk)E (Ca,k| Gtk)− E
(
e−Γ(tk)Ca,k

)
=

n∑
i=1

∫ tk

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s).

Furthermore, applying part i) to Ca,k it holds that:

e−Γ(tk) [Ca,k − E (Ca,k| Gtk)] =
n∑
i=1

∫ T

tk

e−Γ(tk)e−G(s)∂f
B

∂xi
(s,X(s))dMW

i (s).



DECOMPOSING DYNAMIC RISKS INTO RISK COMPONENTS 52

In total, using (31) we have:

e−Γ(tk)Ca,k − E
(
e−Γ(tk)Ca,k

)
=

n∑
i=1

∫ T

0

[
e−Γ(s)e−G(s)∂f

A

∂xi
(s,X(s))1[0,tk](s)

+ e−Γ(tk)e−G(s)∂f
B

∂xi
(s,X(s))1(tk,T ](s)

]
dMW

i (s).

This implies equation (15) using the equality:

n∑
i=1

∫ t

0

ϕ̃i(u)dMW
i (u) =

∫ t

0

ϕ̃(u)dMW (u) =

∫ t

0

ϕ̃(u)σ(u)dW (u)

=
d∑
j=1

∫ t

0

(ϕ̃(u)σ(u))jdWj(u),

(32)

where ϕ̃ = (ϕ̃1, . . . , ϕ̃n) is any vector, MW = (MW
1 , . . . ,MW

n ), and (·)j denotes the
j-th component of a vector. The statement then follows by Lemma 3.

(b) If T ≤ tk, we consider the decomposition:

e−Γ(tk)Ca,k − E
(
e−Γ(tk)Ca,k

)
=
[
E
(
e−Γ(tk)

∣∣GT )Ca,k − E
(
e−Γ(tk)Ca,k

)]
+
[
e−Γ(tk) − E

(
e−Γ(tk)

∣∣GT )]Ca,k
and again derive the martingale representations of the two parts separately. Analo-
gously to above, we obtain:

E
(
e−Γ(tk)

∣∣GT )Ca,k − E
(
e−Γ(tk)Ca,k

)
=

n∑
i=1

∫ T

0

e−Γ(s)e−G(s)∂f
A

∂xi
(s,X(s))dMW

i (s),

and:

[
e−Γ(tk) − E

(
e−Γ(tk)

∣∣GT )]Ca,k =
n∑
i=1

∫ tk

T

e−Γ(s)Ca,k
∂fC

∂xi
(s,X(s))dMW

i (s),
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so that:

e−Γ(tk)Ca,k − E
(
e−Γ(tk)Ca,k

)
=

n∑
i=1

∫ tk

0

[
e−Γ(s)e−G(s)∂f

A

∂xi
(s,X(s))1[0,T ](s)

+ e−Γ(s)Ca,k
∂fC

∂xi
(s,X(s))1(T,tk](s)

]
dMW

i (s).

This implies equation (15) using (32). The statement then follows by Lemma 3.

3. The assumption on the form of Ca(v) together with (29) yield that, for each v ∈ [0, T ]:

E
(
e−Γ(v)Ca(v)

∣∣Gt) = e−Γ(t)e−G(t)E
(
e−

∫ v
t [µ(s,X(s))+g(s,X(s))]dsh(X(v))

∣∣∣Gt)
= e−Γ(t)e−G(t)f v(t,X(t))

= f̃ v(t,Γ(t), G(t), X(t)), t ≤ v,

where f v : [0, v] × Rn → R. Since f v is assumed to be smooth, this holds for f̃ v as well.
Thus, Itô’s formula yields for t ≤ v (Protter, 2005, Theorem 33):

E
(
e−Γ(v)Ca(v)

∣∣Gt)− E
(
e−Γ(v)Ca(v)

)
=

n∑
i=1

∫ t

0

e−Γ(s)e−G(s)∂f
v

∂xi
(s,X(s))dMW

i (s) +

∫ t

0

a(s)ds,

where a = (a(t))0≤t≤T ∗ is short-hand for all ds-quantities. We have used (30) and that
(t,Γ(t), G(t), X(t)) has continuous paths. By the same arguments as in i), the ds-term
has to vanish. Thus, exploiting (32) we obtain by Lemma 4 for t ∈ [0, T ] (for t > T all
integrands are zero) that:

ψWi (t) = (m−N(t−))eΓ(t)

∫ T

t

ϕvi (t)dv

= (m−N(t−))e−G(t)

∫ T

t

∂f v

∂xi
(t,X(t))dv, i = 1, . . . , n,
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and:

ψN(t) = −
∫ T

t

E
(
eΓ(t)−Γ(v)Ca(v)

∣∣Gt) dv
= −

∫ T

t

e−G(t)E
(
e−

∫ v
t [µ(s,X(s))+g(s,X(s))]dsh(X(v))

∣∣∣Gt) dv
= −e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv.

4. As in part iii), the assumption on the form of Cad(t) and µ(t) together with (29) yield that,
for each v ∈ [0, T ]:

E
(
e−Γ(v)Cad(v)µ(v)

∣∣Gt)
= e−Γ(t)e−G(t)E

(
e−

∫ v
t [µ(s,X(s))+g(s,X(s))]dsh(X(v))µ(v,X(v))

∣∣∣Gt)
= e−Γ(t)e−G(t)f v(t,X(t))

= f̃ v(t,Γ(t), G(t), X(t)), t ≤ v,

where f v : [0, v] × Rn → R. Thus, the integrands ψWi (t), i = 1, . . . , n, of part iv) follow
analogously to part iii) using Lemma 5 instead of Lemma 4. Lemma 5 also yields for t ≤ T

(otherwise it is equal to zero) that:

ψN(t) = −
[∫ T

t

E
(
eΓ(t)−Γ(v)Cad(v)µ(v)

∣∣Gt) dv − Cad(t)]
= −

[∫ T

t

e−G(t)E
(
e−

∫ v
t [µ(s,X(s))+g(s,X(s))]dsh(X(v))µ(v)

∣∣∣Gt) dv − Cad(t)]
= −

[
e−

∫ t
0 g(s,X(s))ds

∫ T

t

f v(t,X(t))dv − Cad(t)
]
. �

Proof of Proposition 5

The following lemma will simplify the proof.

Lemma 6 Let T ∈ [0, T ∗] be fixed. If supt∈[0,T ] E (µ2(t)) < ∞ and if
(
ψN(t)

)
0≤t≤T is a G-

predictable process with supt∈[0,T ] E
([
ψN(t)

]4)
<∞, then:

1

m

∫ T

0

ψN(t)dMN(t)
L2

−−−→
m→∞

0.
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Proof of Lemma 6

We need to show that:

E

([
1

m

∫ T

0

ψN(t)dMN(t)− 0

]2
)

=
1

m2
E

([∫ T

0

ψN(t)dMN(t)

]2
)
−−−→
m→∞

0.

From Andersen et al. (1997, p. 78), we know that the predictable quadratic variation of MN(t)

equals 〈MN ,MN〉(t) =
∫ t

0
(m−N(s−))µ(s)ds. SinceMN(t) is a martingale, since ψN is assumed

to be predictable, and since E
(∫ T

0

[
ψN(t)

]2
d〈MN ,MN〉(t)

)
< ∞ by the calculations below, it

follows that
∫ T

0
ψN(t)dMN(t) is a square integrable martingale and that the Itô isometry applies

(for both, see Klebaner, 2005, p. 234) yielding:

1

m2
E

([∫ T

0

ψN(t)dMN(t)

]2
)

=
1

m2
E

(∫ T

0

[
ψN(t)

]2
(m−N(t−))︸ ︷︷ ︸

≤m

µ(t)dt

)

≤ 1

m
E
(∫ T

0

[
ψN(t)

]2
µ(t)dt

)
.

(33)

Since by assumption C1 = supt∈[0,T ] E
([
ψN(t)

]4)
< ∞ and C2 = supt∈[0,T ] E (µ2(t)) <∞, the

theorem of Fubini-Tonelli and the Cauchy-Schwarz inequality yield:

E
(∫ T

0

[
ψN(t)

]2
µ(t)dt

)
=

∫ T

0

E
([
ψN(t)

]2
µ(t)

)
dt

Cauchy-Schwarz
≤

∫ T

0

√
E
(
[ψN(t)]4

)
E (µ2(t))dt ≤

∫ T

0

√
C1C2 = T

√
C1C2 = C <∞.

Together with (33), we obtain:

0 ≤ 1

m2
E

([∫ T

0

ψN(t)dMN(t)

]2
)
≤ 1

m
E
(∫ T

0

[
ψN(t)

]2
µ(t)dt

)
≤ 1

m
C −−−→

m→∞
0. �

Returning to the proof of Proposition 5, note that any conditional expectation E(·|Gt) is pre-
dictable, since it is by definition Gt-measurable and Gt is left-continuous as a result of the continuity
of Brownian motions.

1. The process (ψNak(t))0≤t≤tk defined by ψNak(t) = E
(
eΓ(t)−Γ(tk)Ca,k

∣∣Gt) for all t ∈ [0, tk] is
predictable. Furthermore, applying Jensen’s inequality for conditional expectations (Protter,
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2005, p. 11), and using that Γ(t) is non-decreasing in t, it follows that:

sup
t∈[0,tk]

E
([
ψNak(t)

]4)
= sup

t∈[0,tk]

E
([

E
(
eΓ(t)−Γ(tk)Ca,k

∣∣Gt)]4)
≤ sup

t∈[0,tk]

E
(
E
([
eΓ(t)−Γ(tk)Ca,k

]4∣∣∣Gt)) ≤ sup
t∈[0,tk]

E
(
E
(

[Ca,k]
4
∣∣Gt))

= sup
t∈[0,tk]

E
(
[Ca,k]

4) = E
(
[Ca,k]

4) <∞ (by assumption).

Since we also assume that supt∈[0,tk] E (µ2(t)) <∞, the statement follows by Lemma 6.

2. The process (ψNa (t))0≤t≤T defined by ψNa (t) =
∫ T
t
E
(
eΓ(t)−Γ(s)Ca(s)

∣∣Gt) ds for all t ∈
[0, T ] is predictable. Furthermore, since 0 ≤ eΓ(t)−Γ(s) ≤ 1 for s ≥ t and since C =

supt∈[0,T ] E (|Ca(t)|) < ∞ as a result of the boundedness of Ca(t), it follows by applying
Jensen’s inequality for integrals and for conditional expectations (for the latter, cf. Protter,
2005, p. 11) that for any t ∈ [0, T ]:

∣∣ψNa (t)
∣∣ =

∣∣∣∣∫ T

t

E
(
eΓ(t)−Γ(s)Ca(s)

∣∣Gt) ds∣∣∣∣ ≤ ∫ T

t

∣∣E (eΓ(t)−Γ(s)Ca(s)
∣∣Gt)∣∣ ds

≤
∫ T

t

E
(
eΓ(t)−Γ(s) |Ca(s)|

∣∣Gt) ds ≤ C T.

Thus, we have:

sup
t∈[0,T ]

E
([
ψNa (t)

]4) ≤ sup
t∈[0,T ]

E
(
[CT ]4

)
= C4 T 4 <∞.

Since we also assume that supt∈[0,T ] E (µ2(t)) <∞, the statement follows by Lemma 6.

3. Since Xm, Ym, X, Y ∈ L2(P) and Xm
L2

−→ X, Ym
L2

−→ Y implies that Xm + Ym
L2

−→ X + Y,

it is sufficient to show that:

a)
1

m

∫ T

0

[
−
∫ T

t

E
(
eΓ(t)−Γ(s)Cad(s)µ(s)

∣∣Gt) ds] dMN(t)
L2

−−−→
m→∞

0, and

b)
1

m

∫ T

0

Cad(t)dM
N(t)

L2

−−−→
m→∞

0.

Define ψNad,1(t) = −
∫ T
t
E
(
eΓ(t)−Γ(s)Cad(s)µ(s)ds

∣∣Gt) and ψNad,2(t) = Cad(t) for all t ∈
[0, T ]. Note that since by assumption supt∈[0,T ] E (µ4(t)) < ∞, it also follows by Jensen’s
inequality that:

sup
t∈[0,T ]

E
(
µ2(t)

)
≤ sup

t∈[0,T ]

√
E (µ4(t)) <∞.
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ad a): Since the process (ψNad,1(t))0≤t≤T is predictable, since 0 ≤ eΓ(t)−Γ(s) ≤ 1 for s ≥ t,

and since C1 = supt∈[0,T ] E (|Cad(t)|) < ∞ as a result of the boundedness of Cad, it
follows by applying Jensen’s inequality for integrals and for conditional expectations
(for the latter, cf. Protter, 2005, p. 11) that:

∣∣ψNad,1(t)
∣∣ =

∣∣∣∣∫ T

t

E
(
eΓ(t)−Γ(s)Cad(s)µ(s)

∣∣Gt) ds∣∣∣∣
≤
∫ T

t

E
(
eΓ(t)−Γ(s) |Cad(s)|µ(s)

∣∣Gt) ds
≤ C1

∫ T

t

E (µ(s)| Gt) ds ≤ C1

∫ T

0

E (µ(s)| Gt) ds.

Since by assumption C2 = supt∈[0,T ] E (µ4(t)) <∞, this implies:

sup
t∈[0,T ]

E
([
ψNad,1(t)

]4) ≤ sup
t∈[0,T ]

E

([
C1

∫ T

0

E (µ(s)| Gt) ds
]4
)

(∗)
≤ sup

t∈[0,T ]

C4
1 E
(∫ T

0

E
(
µ4(s)

∣∣Gt) ds)
(∗∗)
= sup

t∈[0,T ]

C4
1

∫ T

0

E
(
µ4(s)

)
ds ≤ C4

1 C2 T <∞,

where (∗) again follows by Jensen’s inequality for integrals and conditional expecta-
tions and (∗∗) from the theorem of Fubini-Tonelli. Since supt∈[0,T ] E (µ2(t)) < ∞ as
shown above, the statement follows by Lemma 6.

ad b): The process (ψNad,2(t))0≤t≤T is predictable. As a result of the boundedness of Cad(t),
it also holds C1 = supt∈[0,T ] E (|Cad(t)|) <∞, so that:

sup
t∈[0,T ]

E
([
ψNad,2(t)

]4)
= sup

t∈[0,T ]

E
(
[Cad(t)]

4) ≤ C4
1 <∞.

Since supt∈[0,T ] E (µ2(t)) < ∞ as shown above, the statement directly follows by
Lemma 6. �

Remark 7 Convergence in probability of the unsystematic risk components (instead of L2-

convergence) can be shown under less restrictive assumptions, e.g. by applying the (stochastic)

dominated convergence theorem similarly as below for the systematic risk components.



DECOMPOSING DYNAMIC RISKS INTO RISK COMPONENTS 58

Proof of Proposition 6

The following lemma will simplify the proof.

Lemma 7 If ζ = (ζ(t))0≤t≤T is G-predictable and
∫ T

0
ζ(t)2dt < ∞ almost surely, then for 0 ≤

tk ≤ T ≤ T ∗:

1

m

∫ T

0

[
(m−N(t−))eΓ(t)1[0,tk] + (m−N(tk))e

Γ(tk)1(tk,T ]

]
ζ(t)dW (t)

P−−−→
m→∞

∫ T

0

ζ(t)dW (t),

where (W (t))0≤t≤T ∗ is a one-dimensional Brownian motion.

Proof of Lemma 7

Define:

ζm(t) =

[
(m−N(t−))

m
eΓ(t)1[0,tk](t) +

(m−N(tk))

m
eΓ(tk)1(tk,T ](t)

]
ζ(t).

If ζm = (ζm(t))0≤t≤T , m ∈ N, are predictable processes with ζm(t)
a.s.−−−→

m→∞
ζ(t) for all t ∈ [0, T ],

and if there exists aW -integrable process α = (α(t))0≤t≤T such that |ζm(t)| ≤ α(t) for allm ∈ N,
t ∈ [0, T ], then the statement of the lemma follows by the dominated convergence theorem for
stochastic integrals (Protter, 2005, p. 176) . Since ζ and µ are by assumption predictable, it follows
that ζm is predictable for each m ∈ N. Furthermore, since the remaining lifetimes τ ix, i ∈ N,
are assumed to be conditionally i.i.d., a conditional version of Kolmogorov’s strong law of large
numbers (Majerek et al., 2005, p. 154) together with the continuity of µ(t) yields that:

m−N(t−)

m

a.s.−−−→
m→∞

e−
∫ t
0 µ(s)ds.

As a result, ζm(t)
a.s.−−−→

m→∞
ζ(t) for all t ∈ [0, T ]. Furthermore, since m−N(t−)

m
≤ 1 and µ(t) is

positive for all t ∈ [0, T ], we have:

|ζm(t)| ≤
[
eΓ(t)1[0,tk](t) + eΓ(tk)1(tk,T ](t)

]
|ζ(t)| ≤ eΓ(T ) |ζ(t)| = α(t).

Since µ(t) has continuous paths (particularly on [0, T ]), it follows that e2Γ(T ) < ∞ a.s. Together
with the assumption

∫ T
0
ζ(t)2dt < ∞ a.s., we obtain that

∫ T
0
α(t)2dt < ∞ with probability one.

Since α is also G-predictable, this implies that α is W -integrable (Klebaner, 2005, p. 96), and the
statement follows. �

Returning to the proof of Proposition 6, since MW
i (t) =

∑d
k=1

∫ t
0
σik(s)dWk(s), 0 ≤ t ≤ T ∗,
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it follows that:

R
(m)
i, · =

d∑
k=1

d∑
j=1

∫ T

0

[
(m−N(t−))eΓ(t)1[0,tk](t) + (m−N(tk))e

Γ(tk)1(tk,T ](t)
]

× ϕj, ·(t)σ−1
ji (t)σik(t)dWk(t).

(34)

Because of the additivity of integration and the continuous mapping theorem, it is sufficient to
prove the convergence of each summand in (34), i = 1, . . . , n, j, k = 1, . . . , d, separately.
For this, by Lemma 7, we only need to show that each ϕj, ·(t)σ−1

ji (t)σik(t) is G-predictable with∫ T
0

(ϕj, ·(t)σ
−1
ji (t)σik(t))

2dt <∞ almost surely. We have:

• By assumption, σ(t) is G-adapted with continuous paths.

• When determining the inverse of σ(t) with Cramer’s rule and the necessary determinants
with Laplace’s formula, it can be seen that σ−1

ij (t) is a continuous function of the matrix
components σij(t), i = 1, . . . n, j = 1 . . . , d. So σ−1

ij (t) has itself continuous paths and is
G-adapted.

• In all parts ii), iii), and iv), ϕj, ·(t) is a conditional expectation of the form E ( ·| Gt) or can
be transformed into such an expectation using the theorem of Fubini-Tonelli for conditional
expecations. As a result, ϕj, ·(t) is by definition G-adapted.

• The D1,2-assumptions in Proposition 3 and particularly the implicit square integrability of
the respective quantities yield that:

E

(∫ T

0

ϕj, ·(t)
2dt

)
= E

((∫ T

0

ϕj, ·(t)dWj(t)

)2)
<∞,

implying that
∫ T

0
ϕj, ·(t)

2dt <∞ almost surely.

Since G = (Gt)0≤t≤T is left-continuous as a result of the continuity of Brownian motions, every G-
adapted process is also G-predictable. Thus, the product ϕj, ·(t)σ−1

ji (t)σik(t) is not only G-adapted,
but also G-predictable. Furthermore, since σ−1

ji (t)σik(t) has continuous paths and
∫ T

0
ϕj, ·(t)

2dt <

∞ almost surely, it follows similarly as in the proof of Lemma 7 that
∫ T

0
(ϕj, ·(t)σ

−1
ji (t)σik(t))

2dt <

∞ almost surely. The statement then directly follows by Lemma 7. �

Proof of Corollary 1

1. Since each L(m)
· can be written as the sum of m random variables which are conditionally

identically distributed and conditionally independent given the σ-algebra GT ∗ , the statement
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follows by a conditional version of Kolmogorov’s strong law of large numbers (Majerek
et al., 2005, Theorem 4.2).

2. Since E(L
(m)
· ) = mE(L

(1)
· ) as a result of the conditionally identical distribution of τ ix, i =

1, . . . ,m, it follows by part i) that:

1

m

(
L(m)
· − E(L(m)

· )
) P−−−→

m→∞
E(L(1)

· |GT ∗)− E(L(1)
· ).

Furthermore, by Proposition 5 (note thatL2-convergence implies convergence in probability)
and Proposition 6 we also have:

1

m

(
L(m)
· − E(L(m)

· )
)

=
n+1∑
i=1

1

m
R

(m)
i, ·

P−−−→
m→∞

n∑
i=1

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t).

Since the limit in probability is almost surely unique, it follows that:

E(L(1)
· |GT ∗)− E(L(1)

· ) =
n∑
i=1

∫ T

0

d∑
j=1

ϕj, ·(t)σ
−1
ji (t)dMW

i (t),

which is an MRT decomposition. By the uniqueness of the MRT decomposition (Propo-
sition 2), each risk component R∗i thus equals almost surely the limit in probability of
1
m
R

(m)
i, · , i = 1, . . . , n+ 1, so that the statement follows. �

B Calculation of the MRT Decomposition Examples

Details on the Examples from Section 2.4

The MRT decompositions for Examples 1, 2, and 3 follow by calculating the expected values as
detailed in Proposition 4.1 (where h ≡ 0 in all three examples) and taking derivatives.

Similarly, by Proposition 4.1, the MRT components for Example 4 are also given by the partial
derivatives of the conditional expectation of the risk R. We have:

E[L|Z1(t), Z2(t)]

= E [(Z1(t) + σ1 (W1(1)−W1(t))×max {K − Z2(t)− σ2 (W2(1)−W2(t)), 0}|Z1(t), Z2(t)]

= Z1(t)× E
[
(K − Z2(t)) 1{(K−Z2(t))/σ2>W2(1)−W2(t)}|Z2(t)

]
−σ2 Z1(t)× E

[
(W2(1)−W2(t)) 1{(K−Z2(t))/σ2>W2(1)−W2(t)}|Z2(t)

]
= Z1(t) (K − Z2(t)) Φ

(
K − Z2(t)

σ2

√
1− t

)
− σ2 Z1(t)E

[
(W2(1)−W2(t)) 1{(K−Z2(t))/σ2>W2(1)−W2(t)}

]
,
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where Φ is the standard normal cumulative distribution function. Note that for a normal random
variable X ∼ N(0, s2), we obtain:

E[X 1{X<y}] =

∫ y

−∞
x

1√
2πs

e
−x2/2 s2 dx = − 1√

2π
s e

−y2/2 s2 .

Thus:

E[L|Z1(t), Z2(t)] = Z1(t) (K − Z2(t)) Φ

(
K − Z2(t)

σ2

√
1− t

)
+ σ2 Z1(t)

√
1− t√
2π

exp

{
−(K − Z2(t))2

2σ2
2 (1− t)

}
.

Taking derivatives, we obtain:

∂

∂Z1(t)
E[L|Z1(t), Z2(t)] = (K − Z2(t)) Φ

(
K − Z2(t)

σ2

√
1− t

)
+ σ2

√
1− t√
2π

exp

{
−(K − Z2(t))2

2σ2
2 (1− t)

}
and:

∂

∂Z2(t)
E[L|Z1(t), Z2(t)] = −Z1(t) Φ

(
K − Z2(t)

σ2

√
1− t

)
− Z1(t) (K − Z2(t))

1

σ2

√
1− t

φ

(
K − Z2(t)

σ2

√
1− t

)
+Z1(t) (K − Z2(t))

1
√

1− t σ2

√
2π

exp

{
−(K − Z2(t))2

2σ2
2 (1− t)

}
= −Z1(t) Φ

(
K − Z2(t)

σ2

√
1− t

)
,

where φ is the standard normal density function. �

Details on Example 5

We assume that σ(t, µ(t)) 6= 0 for all t ∈ [0, T ] P-almost surely and that µ(t), eΓ(t), e−Γ(t) ∈ D1,2

with Dt (µ(t)) = σ(t, µ(t)) for all t ∈ [0, T ].7

Clearly, since−mP0 is deterministic, the integrands of its MRT decomposition are zero. Thus:

R = L− E (L) =

∫ T

0

(m−N(t−))eΓ(t)E
(
Dt

(
e−Γ(T )

)∣∣Gt)
σ(t, µ(t))

dMW (t)−
∫ T

0

E
(
eΓ(t)−Γ(T )

∣∣Gt) dMN(t).

Since Dt (µ(s)) = 0 for all t > s, and thus Dt (Γ(t)) = 0, the chain rule from Malliavin calculus

7Note that for globally Lipschitz-continuous coefficients θ and σ with at most linear growth, diffusion processes are
Malliavin differentiable (Nualart, 2006, Theorem 2.2.1). However, as the discussion on the Malliavin differentiability
of square-root processes shows (Alòs and Ewald, 2008), the general Malliavin differentiability of diffusion processes
– and even affine processes – is not guaranteed.
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(Nualart, 2006, Proposition 1.2.3) implies:

Dt

(
eΓ(t)−Γ(T )

)
= −eΓ(t)−Γ(T )Dt (Γ(T )− Γ(t)) = −eΓ(t)−Γ(T )Dt (Γ(T )) = eΓ(t)Dt

(
e−Γ(T )

)
,

i.e. eΓ(t)E
(
Dt

(
e−Γ(T )

)∣∣Gt) = E
(
Dt

(
eΓ(t)−Γ(T )

)∣∣Gt). Furthermore, exchanging conditional ex-
pectation and Malliavin derivative operator (Di Nunno et al., 2009, Proposition 3.12) together with
(8) we have:

E
(
Dt

(
eΓ(t)−Γ(T )

)∣∣Gt) = Dt

(
E
(
eΓ(t)−Γ(T )

∣∣Gt)) = Dt

(
eα(t)+β(t)µ(t)

)
.

The chain rule finally yields:

Dt

(
eα(t)+β(t)µ(t)

)
= eα(t)+β(t)µ(t)β(t)Dt (µ(t)) = eα(t)+β(t)µ(t)β(t)σ(t, µ(t)).

Hence, all-in-all, we obtain:

R = L− E (L) =

∫ T

0

(m−N(t−)) eα(t)+β(t)µ(t)β(t)dMW (t)−
∫ T

0

eα(t)+β(t)µ(t)dMN(t).

For the second part, it is evident that the function fA satisfies the smoothness condition in this case.
In more general situations, one can for instance rely on the (sufficient) conditions in Heath and
Schweizer (2000). Of course, in case an analytic expression cannot be determined, the respective
function f can be computed numerically. �

Details on the Example from Section 4

Since r is an affine process, it follows that:

E
(
e−

∫ T
t r(s)ds

∣∣∣Gt) = eαr(t,T )−βr(t,T )r(t), T ∈ [t, T ∗],

where (Brigo and Mercurio, 2007, p. 66):

αr(t, T ) = 2κθ
σ2
r
log

(
2he(κ+h)

T−t
2

2h+(κ+h)(eh(T−t)−1)

)
, βr(t, T ) = 2(eh(T−t)−1)

2h+(κ+h)(eh(T−t)−1)
, h =

√
κ2 + 2σ2

r .

Similarly, the mortality intensity process is affine so that: E
(
e−

∫ T
t µ(s,x)ds

∣∣∣Gt) =

eαµ(t,T,x)−βµ(t,T,x)µ(t,x), T ∈ [t, T ∗], where αµ and βµ satisfy the ordinary differential equations
(ODEs) specified in Proposition 3.1 of Dahl and Møller (2006, p. 197). For deriving the MRT
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decomposition of R = L− E(L) with L defined in (9), first note that L can be rewritten as:

L =
T∑
k=1

(m−N(tk−1)) e−
∫ tk
0 r(s)ds max{P0 − A(tk), 0}

−
T∑
k=1

(m−N(tk)) e
−

∫ tk
0 r(s)ds max{P0 − A(tk), 0},

(35)

i.e. it is a sum of survival benefits. We thus define the functions:

fA1
k (t, x) = E

(
e−

∫ tk−1
t µ(s)dse−

∫ tk
t r(s)ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk−1,

fB1
k (t, x) = E

(
e−

∫ tk
t r(s)ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk,

fA2
k (t, x) = E

(
e−

∫ tk
t [µ(s)+r(s)]ds max{P0 − A(tk), 0}

∣∣∣X(t) = x
)
, 0 ≤ t ≤ tk,

which can be simplified by using the independence of S, r, and µ, as well as exploiting the log-
normal distribution of S and the affine property of r and µ. This immediately shows that all three
functions are sufficiently smooth, so that we can apply Proposition 4, part 2. We obtain the MRT
decomposition:

R = L− E(L) = Rfund +Rint +Rsys m +Runsys m.

where the systematic risk component for fund (fund, i = 1), interest (int, i = 2), systematic
mortality risk (sys m, i = 3), and unsystematic mortality risk (unsys m, i = 4) are given by:

Ri =
T∑
k=1

(∫ tk−1

0

(m−N(t−))e−
∫ t
0 r(s)ds

∂fA1
k

∂xi
(t,X(t))dMW

i (t)

+

∫ tk

tk−1

(m−N(tk−1))e−
∫ t
0 r(s)ds

∂fB1
k

∂xi
(t,X(t))dMW

i (t)

)

−
T∑
k=1

∫ tk

0

(m−N(t−))e−
∫ t
0 r(s)ds

∂fA2
k

∂xi
(t,X(t))dMW

i (t),

respectively, and the unsystematic mortality risk component is given by:

R4 = −
T∑
k=1

∫ tk−1

0

e−
∫ t
0 r(s)dsfA1

k (t,X(t))dMN(t) +
T∑
k=1

∫ tk

0

e−
∫ t
0 r(s)dsfA2

k (t,X(t))dMN(t).

In our numerical calculations, we perform N = 100, 000 simulations for determining the dis-
tributions of R,R1, R2, R3, and R4. For projecting the risk drivers r and µ as well as for approx-
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imating the stochastic integrals, we use an Euler scheme with n = 100 time steps per year. The
number of survivors in the portfolio is projected by means of the binomial distribution conditioned
on the mortality intensities. We solve the ODEs associated with the mortality model numerically
using the Runge-Kutta method.
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