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Abstract

The estimation of enterprise risk for financial institutions entails a reevaluation of
the company’s assets and liabilities at some future point in time for a (large) number
of stochastic forecasts of economic and firm-specific variables. Relying on well-known
ideas for pricing non-European derivatives, the current paper discusses tackling this
nested valuation problem based on Monte Carlo simulations and least-squares regres-
sion techniques. We formalize and analyze the algorithm in an operator setting. Impor-
tantly, we address the problem of how to choose the regressors (“basis functions”), and
show that a robust choice is given by the left singular functions of the corresponding
conditional expectation operator. Our numerical examples demonstrate that the algo-
rithm can produce accurate results at relatively low computational costs, particularly
when relying on robust basis functions.
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1 Introduction

Many financial risk management applications entail a reevaluation of the company’s assets
and liabilities at some time horizon τ – sometimes called a risk horizon – for a large num-
ber of realizations of economic and firm-specific (state) variables. The resulting empirical
distribution of firm economic capital is used for managing enterprise risk (Nocco and Stulz,
2006) and also for the derivation of enterprise risk measures such as Value-at-Risk (VaR)
or Expected Shortfall (ES), which serve as the basis for capital requirements within several
regulatory frameworks such as Solvency II for insurance companies and Basel III.5 for banks,
respectively. However, the high complexity of this nested computation structure leads firms
to struggle with the implementation.

This paper discusses an approach to this problem based on least-squares regression and
Monte Carlo simulations akin to the well-known Least-Squares Monte Carlo method (LSM)
for pricing non-European derivatives introduced by Longstaff and Schwartz (2001). Anal-
ogously to the LSM pricing method, this approach relies on two approximations (Clément
et al., 2002): On the one hand, the capital random variable, which can be represented as a
risk-neutral conditional expected value at the risk horizon τ , is replaced by a finite linear
combination of functions of the state variables, so-called basis functions. As the second ap-
proximation, Monte Carlo simulations and least-squares regression are employed to estimate
the coefficients in this linear combination. Hence, for each realization of the state variables,
the resulting linear combination presents an approximate realization of the capital at τ , and
the resulting sample can be used for estimating risk measures.

Although this approach is increasingly popular in practice for calculating economic capital
particularly in the insurance industry (Barrie and Hibbert, 2011; Milliman, 2013; Nikolić et
al., 2007) and has been used in several applied research contributions (Floryszczak et al.,
2016; Pelsser and Schweizer, 2016; Krah et al., 2018, e.g.), these papers do not provide a
detailed analysis or insights on how to choose the basis functions. Our work closes this gap
in literature.

We begin our analysis by introducing our setting and the algorithm. As an important
innovation, we frame the estimation problem via a valuation operator that maps future
payoffs (as functionals of the state variables) to the conditional expected value at the risk
horizon. We formally establish convergence of the algorithm for the risk distribution (in
probability) and for families of risk measures under general conditions when taking limits
sequentially in the first and second approximation. In addition, by relying on results from
Newey (1997) on the convergence of series estimators, we present conditions for the joint
convergence of the two approximations in the general case and more explicit results for the
practically relevant case of orthonormal polynomials.

The joint convergence results illustrate the interplay between the two approximation
steps. In particular, when increasing the number of basis functions in the functional approx-
imation, it will be necessary to simultaneously increase the number of sample paths used in
the regression approximation – which is the main source of complexity in high-dimensional
enterprise risk models. Thus, choosing adequate basis functions is of crucial importance in
such settings.

This is where our operator formulation becomes especially useful. By relying on repre-
sentation results from functional analysis, we show that under certain conditions, the (left)
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singular functions of the valuation operator present a robust choice for the basis functions.
More precisely, we demonstrate that these singular functions yield the best approximation for
the company’s capital across all possible cash flow profiles given the company’s risk model,
in the minimax sense. The intuition is that akin to the singular value decomposition (SVD)
for a matrix, the singular functions provide the most important dimensions in spanning the
image space of the valuation operator.

The availability of robust basis functions is desirable in the risk management context for
a variety of reasons. First, unlike pricing applications of LSM, enterprise risk models usually
entail dozens of stochastic risk factors driving the asset and liability sides of the balance sheet,
so that a systematic and parsimonious choice is crucial. Furthermore, again unlike pricing
applications, the same firm-wide scenarios are used for evaluating the company’s assets
and liability portfolios, which contain a multitude of different cash flow profiles. Separate
consideration of sub- or perturbed portfolios is common for calculating capital allocations,
and positions will also adjust over time, whereas the underlying risk model typically remains
in place. Thus tying the choice of the basis functions to the model framework rather than a
particular payoff function is expedient.

To operationalize our ideas, we first discuss the calculation of the singular values of
our valuation operator – and, thus, the derivation of robust basis functions – for models
with a single payoff date and (multivariate) Gaussian transition densities. In this case, it
is straightforward to show that the underlying assumptions are satisfied. And, by following
ideas from Khare and Zhou (2009), it is possible to derive the singular functions, which
take the form of products of Hermite polynomials of linearly transformed states, by solving
a related eigenvalue problem. While these assumptions are rather restrictive, it is possible
to rely on the analogous approach even in general situations with an arbitrary number
of payment dates and arbitrary risk driver distributions, by solely considering the first and
second moments. This is inspired by Discriminant Analysis for classification problems, where
the class densities of the features are approximated by a multivariate Gaussian distribution
focussing on the first and second moments (Hastie et al., 2009, Sec. 4.3). In particular,
this approach circumvents potentially tedious calculations associated with a the numerical
derivation of singular values in general models.

We illustrate our theoretical results considering popular annuitization guarantees within
Variable Annuity contracts and three stochastic risk drivers (fund risk, interest rate risk, and
mortality risk), both in a Gaussian and a general (non-Gaussian) setting. Thus, while the
application does not match the complexities present in real-world enterprise risk applications,
it serves to establish some relevant insights. We demonstrate that robust basis functions
uniformly outperform the conventional choice of polynomials. In particular, two points
deserve emphasis. First, it is important to note that each robust basis function is a linear
combination of all stochastic states, and their order is determined uniquely by each functions
relevance in spanning the valuation operator. No “intuitive” ad-hoc choices are necessary
on which components are most relevant and how to sequence higher-order terms. This
aspect is very relevant in practical settings with high-dimensional state vectors, so that
our results provide immediate guidance for these pressing problems. Second, the derivation
of approximations to robust basis functions in general settings is straightforward and only
entails matrix calculations using first and second moments of the risk drivers, which can be
easily estimated from the underlying simulations. Hence, there is little downside associated
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with this approach relative to conventional choices of polynomial families.

Related Literature and Organization of the Paper

Our approach is inspired by the LSM approach for derivative pricing (Carriere, 1996; Tsitsik-
lis and Van Roy, 2001; Longstaff and Schwartz, 2001; Clément et al., 2002) and in principle
our results also apply there, although – as argued above – we believe our results are par-
ticularly relevant in the risk management context. A similar regression-based algorithm for
risk estimation is independently studied in Broadie et al. (2015). Their results are similar
to our sequential convergence results in Section 3.1, and the authors additionally introduce
a weighted version of their regression algorithm. Moreover, Benedetti (2017) provides joint
convergence results under an alternative set of conditions. However, these authors do not
contemplate how to choose the basis functions – although they emphasize the importance of
this choice – which is a key contribution of our paper.

We refer to Makur and Zheng (2016) for the relevance of the SVD of conditional expec-
tations in the information theory literature, which is driven by similar considerations. In
particular, the authors derive the analogous SVD for the Gaussian setting in the univariate
case (see also Abbe and Zheng (2012)). The relevance of Hermite polynomials in this con-
text may not come as a surprise from a stochastic process perspective due to their relevance
in the spectral analysis of the Ornstein-Uhlenbeck semigroup (Linetsky, 2004). However,
as detailed in Makur and Zheng (2016, p. 636), we note that the setting here is distinct
from Markov semigroup theory, where the relevant spaces are framed in terms of invariant
measures and the time interval varies.

As already indicated, the LSM approach enjoys popularity in the context of calculating
(life) insurance economic capital in practice and applied research, so that providing a the-
oretical foundation and guidance for these applications are key motivating factors for this
paper. A number of competing algorithms have been proposed, including variants of the
basic nested simulations approach (Gordy and Juneja, 2010, e.g.), the so-called replicating
portfolio approach (Cambou and Filipović, 2018, e.g.), or non-parametric smoothing ap-
proaches in the nested simulations context (Liu and Staum, 2010; Hong et al., 2017; Risk
and Ludkovski, 2018). While a detailed comparison is beyond the scope of this paper, some
authors note deficiencies of some of these approaches in high-dimensional applications such
as enterprise risk measurement, which is our focus (e.g., Bauer et al. (2012b) for nested
simulations, Pelsser and Schweizer (2016) and Ha (2016) for replicating portfolios, and Hong
et al. (2017) for non-parametric approaches).

The remainder of the paper is structured as follows: Section 2 lays out the simulation
framework and the algorithm; Section 3 addresses convergence of the algorithm; Section
4 introduces the notion of robust basis functions and their derivation; Section 5 provides
our numerical examples; and, finally, Section 6 concludes and points out avenues for future
research. Proofs and technical details as well as some supplemental analyses are relegated
to the Appendix.
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2 The LSM Approach

2.1 Simulation Framework

Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a complete filtered probability space on which all relevant
quantities exist, where T corresponds to the longest-term asset or liability of the company in
view and P denotes the physical measure. We assume that all random variables in what fol-
lows are square-integrable (in L2(Ω,F ,P)). The sigma algebra Ft represents all information
up to time t, and the filtration F is assumed to satisfy the usual conditions.

The uncertainty with respect to the company’s future assets and liabilities arises from
the uncertain development of a number of influencing factors, such as equity returns, interest
rates, demographic or loss indices, etc. We introduce the d-dimensional, sufficiently regular
Markov process Y = (Yt)t∈[0,T ] = (Yt,1, . . . , Yt,d)t∈[0,T ], d ∈ N, the so-called state process, to
model this uncertainty. We assume that all financial assets in the market can be expressed
in terms of Y . Non-financial risk factors can also be incorporated. In this market, we
take for granted the existence of a risk-neutral probability measure (martingale measure) Q
equivalent to P under which payment streams can be valued as expected discounted cash
flows with respect to a given numéraire process (Nt)t∈[0,T ].

In financial risk management, we are now concerned with the company’s financial situa-
tion at a certain (future) point in time τ , 0 < τ < T , which we refer to as the risk horizon.
More specifically, based on realizations of the state process Y over the time period [0, τ ] that
are generated under the physical measure P, we need to assess the available capital Cτ at
time τ calculated as the market value of assets minus liabilities. This amount can serve as
a buffer against risks and absorb financial losses, and thus describes the enteprise-wide risk
situation. It also serves to define capital requirements via a risk-measure ρ. For instance, if
the capital requirement is cast based on VaR, the capitalization at time τ should be sufficient
to cover the net liabilities at least with a probability α, i.e., the additionally required capital
is:

VaRα(−Cτ ) = inf {x ∈ R|P (x+ Cτ ≥ 0) ≥ α} . (1)

The capital at the risk horizon, for each realization of the state process Y , is derived
from a market-consistent valuation approach. While the market value of traded instruments
is usually readily available from the model (“mark-to-market”), the valuation of complex
financial positions on the firm’s asset side such as portfolios of derivatives and/or the valua-
tion of complex liabilities such as insurance contracts containing embedded options typically
require numerical approaches. This is the main source of complexity associated with this
task, since the valuation needs to be carried out for each realization of the process Y at time
τ , i.e., we face a nested valuation problem.

Formally, the available capital is derived as a (risk-neutral) conditional expected value
of discounted cash flows Xt, where for simplicity and to be closer to modeling practice, we
assume that cash flows only occur at discrete times t = 1, 2, . . . , T and that τ ∈ {1, 2, . . . , T} :

Cτ = EQ

[
T∑
k=τ

Nτ

Nk

Xk

∣∣∣∣∣ (Ys)0≤s≤τ

]
. (2)

Note that within this formulation, interim asset and liability cash flows in [0, τ ] may be



An LSM Approach to the Estimation of Enterprise Risk 6

aggregated in the σ(Ys, 0 ≤ s ≤ τ)-measurable position Xτ . Moreover, in contrast to,
e.g., Gordy and Juneja (2010), we consider aggregate asset and liability cash flows at times
k ≥ τ rather than cash flows corresponding to individual asset and liability positions. Aside
from notational simplicity, the reason for this formulation is that we particularly focus on
situations where an independent evaluation of many different positions is not advisable or
feasible as it is for instance the case within economic capital modeling in life insurance (Bauer
et al., 2012b).

In this risk measurement setting, the relevant probability measure is the physical measure
P until the risk horizon τ , and the risk-neutral measure Q after τ . In particular, a sample
path of the state process Y will typically be generated using P over [0, τ ] and Q over (τ, T ].
To streamline our discussion, we introduce the probability measure P̃ via its Radon-Nikodym
derivative:

∂P̃
∂P

=
∂Q
∂P

EP
[
∂Q
∂P |Fτ

] .
Lemma 2.1. We have:

1. P̃(A) = P(A), A ∈ Ft, 0 ≤ t ≤ τ .

2. EP̃ [X| Fτ ] = EQ [X| Fτ ] for every random variable X ∈ F .

Hence, P̃ measures according to P over [0, τ ] but coincides with Q when conditioning on
the risk horizon, so that we can generally operate under P̃ in what follows.

In addition to current interest rates, security prices, etc., the value of the asset and lia-
bility positions may also depend on path-dependent quantities. For instance, Asian options
depend on the average of a certain price index over a fixed time interval, lookback options
depend on the running maximum, and liability values in insurance with profit sharing mech-
anisms depend on entries in the insurer’s bookkeeping system (see also Sec. 5.3). In what
follows, we assume that – if necessary – the state process Y is augmented so that it contains
all quantities relevant for the evaluation of the available capital and still satisfies the Markov
property (Whitt, 1986). Thus, with Lemma 2.1, we obtain:

Cτ = EP̃

[
T∑
k=τ

Nτ

Nk

Xk

∣∣∣∣∣Yτ
]
.

We refer to the state process Y as our model framework. Within this framework, the
asset-liability projection model of the company is given by cash flow projections of the asset-
liability positions, i.e., functionals xk that derive the cash flows Xk based on the current
state Yk:

1

Nτ

Nk

Xk = xk (Yk) , τ ≤ k ≤ T.

1Similarly to Section 8.1 in Glasserman (2004), without loss of generality, by possibly augmenting the
state space or by changing the numéraire process (see Section 5), we assume that the discount factor can be
expressed as a function of the state variables.
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Hence, each model within our model framework can be identified with an element in a suitable
function space, x = (xτ , xτ+1, ..., xT ) . More specifically, we can represent:

Cτ (Yτ ) =
T∑
j=τ

EP̃ [xj (Yj)|Yτ ] = Lx (Yτ ) , (3)

where the operator:

L : H =
T⊕
j=τ

L2(Rd,B, P̃Yj)→ L2(Rd,B,PYτ ) (4)

is mapping a model to capital. We call L in (4) the valuation operator. For our applications
later in the text, it is important to note the following:

Lemma 2.2. L is a continuous linear operator.

Moreover, for our results on the robustness of basis functions, we require compactness of
the operator L. The following lemma provides a version of the well-known Hilbert-Schmidt
condition for L to be compact in terms of the transition densities (Breiman and Friedman,
1985):

Lemma 2.3. Assume there exists a joint density πYτ ,Yj(y, x), j = τ, τ + 1, ..., T , for Yτ
and Yj. Moreover, assume

∫
Rd
∫
Rd πYj |Yτ (y|x)πYτ |Yj(x|y) dy dx < ∞, where πYj |Yτ (y|x) and

πYτ |Yj(x|y) denote the transition density and the reverse transition density, respectively. Then
the operator L is compact.

The definition of L implies that a model can be identified with an element of the
Hilbert space H whereas (state-dependent) capital Cτ can be identified with an element
of L2(Rd,B,PYτ ). The task at hand is now to evaluate this element for a given model
x = (xτ , . . . , xT ), although the model may change between applications as the exposures
may change (e.g., from one year to the next or when evaluating capital allocations). The
resulting risk distribution can then be, e.g., applied to determine the capital requirement via
a (monetary) risk measure ρ : L2(Rd,B,PYτ )→ R as ρ(Lx).

One possibility to carry out this computational problem is to rely on nested simulations,
i.e., to simulate a large number of scenarios for Yτ under P and then, for each of these
realizations, to determine the available capital using another simulation step under Q (Lee,
1998; Gordy and Juneja, 2010). However, this approach is computationally burdensome
and, for some relevant applications, may require a very large number of simulations to
obtain results in a reliable range (Bauer et al., 2012b). Hence, in the following, we develop
an alternative approach for such situations.

2.2 Least-Squares Monte-Carlo (LSM) Algorithm

As indicated in the previous section, the task at hand is to determine the distribution of
Cτ given by Equation (3). Here, the conditional expectation causes the primary difficulty
for developing a suitable Monte Carlo technique. This is akin to the pricing of Bermu-
dan or American options, where “the conditional expectations involved in the iterations of
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dynamic programming cause the main difficulty for the development of Monte-Carlo tech-
niques” (Clément et al., 2002). A solution to this problem was proposed by Carriere (1996),
Tsitsiklis and Van Roy (2001), and Longstaff and Schwartz (2001), who use least-squares
regression on a suitable finite set of functions in order to approximate the conditional expec-
tation. In what follows, we exploit this analogy by transferring their ideas to our problem.

As pointed out by Clément et al. (2002), their approach consists of two different types
of approximations. Proceeding analogously, as the first approximation, we replace the con-
ditional expectation, Cτ , by a finite combination of linearly independent basis functions
ek(Yτ ) ∈ L2

(
Rd,B,PYτ

)
:

Cτ ≈ Ĉ(M)
τ (Yτ ) =

M∑
k=1

αk · ek(Yτ ). (5)

We then determine approximate P-realizations of Cτ using Monte Carlo simulations. We
generate N independent paths (Y

(1)
t )0≤t≤T , (Y

(2)
t )0≤t≤T ,..., (Y

(N)
t )0≤t≤T , where we generate

the Markovian increments under the physical measure for t ∈ (0, τ ] and under the risk-
neutral measure for t ∈ (τ, T ].2 Based on these paths, we calculate the realized cumulative
discounted cash flows:

V (i)
τ =

T∑
j=τ

xj

(
Y

(i)
j

)
, 1 ≤ i ≤ N. (6)

We use these realizations in order to determine the coefficients α = (α1, . . . , αM)′ in the
approximation (5) by least-squares regression:

α̂(N) = argminα∈RM


N∑
i=1

[
V (i)
τ −

M∑
k=1

αk · ek
(
Y (i)
τ

)]2
 .

Replacing α by α̂(N), we obtain the second approximation:

Cτ ≈ Ĉ(M)
τ (Yτ ) ≈ Ĉ(M,N)

τ (Yτ ) =
M∑
k=1

α̂
(N)
k · ek(Yτ ). (7)

In case the distribution of Yτ , PYτ , is not directly accessible, we can calculate realizations

of Ĉ
(M,N)
τ resorting to the previously generated paths (Y

(i)
t )0≤t≤T , i = 1, . . . , N, or, more

precisely, to the sub-paths for t ∈ [0, τ ]. Based on these realizations, we can determine the
corresponding empirical distribution function and, if needed, an estimate for the capital
requirement ρ(Ĉ

(M,N)
τ ). For the analysis of potential errors when approximating the risk

measure based on the empirical distribution function, we refer to Weber (2007).

2Note that it is possible to allow for multiple inner simulations under the risk-neutral measure per outer
simulation under P as in the algorithm proposed by Broadie et al. (2015). However, as shown in their paper,
a single inner scenario as within our version will be the optimal choice when allocating a finite computational
budget. The intuition is that the inner noise diversifies in the regression approach whereas additional outer
scenarios add to the information regarding the relevant distribution.
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3 Convergence of the Algorithm

3.1 Sequential Convergence

The following result establishes convergence of the LSM algorithm when taking limits se-
quentially:

Proposition 3.1. Ĉ
(M)
τ → Cτ in L2(Rd,B,PYτ ), M → ∞, and Ĉ

(M,N)
τ → Ĉ

(M)
τ , N → ∞,

P̃-almost surely. Furthermore, Z(N) =
√
N
[
Ĉ

(M)
τ − Ĉ(M,N)

τ

]
−→ Normal (0, ξ(M)), where

ξ(M) is provided in Equation (26) in the Appendix.

We note that the proof of this convergence result is related to and simpler than the
corresponding result for the Bermudan option pricing algorithm in Clément et al. (2002) since
we do not have to take the recursive nature into account. The primary point of Proposition
3.1 is the convergence in probability – and, hence, in distribution – of Ĉ

(M,N)
τ → Cτ implying

that the resulting distribution function of Ĉ
(M,N)
τ presents a valid approximation of the

distribution of Cτ for large M and N.
The question of whether ρ(Ĉ

(M,N)
τ ) presents a valid approximation of ρ(Cτ ) depends on

the regularity of the risk measure. In general, we require continuity in L2(Rd,B,PYτ ) as well
as point-wise continuity with respect to almost sure convergence (see Kaina and Rüschendorf
(2009) for a corresponding discussion in the context of convex risk measures). In the special
case of orthonormal basis functions, we are able to present a more concrete result:

Corollary 3.1. If {ek, k = 1, . . . ,M} are orthonormal, then Ĉ
(M,N)
τ → Cτ , N →∞, M →

∞ in L1(Rd,B,PYτ ). In particular, if ρ is a finite convex risk measure on L1(Rd,B,PYτ ), we

have ρ(Ĉ
(M,N)
τ )→ ρ (Cτ ) , N →∞, M →∞.

Thus, the algorithm produces a consistent estimate of the available capital distribution
and for capital requirements, at least for certain classes of risk measures ρ. That is, if N
and M are chosen large enough, Ĉ

(M,N)
τ and ρ(Ĉ

(M,N)
τ ) presents viable approximations for Cτ

and ρ(Cτ ), respectively. In the next part, we make more precise what large enough means
and, particularly, how large N needs to be chosen relative to M.

3.2 Joint Convergence and Convergence Rate

The LSM algorithm approximates the capital level – which is given by the conditional ex-
pectation of the aggregated future cash flows Vτ =

∑T
j=1 xj(Yj) – by its linear projection on

the subspace spanned by the basis functions e(M)(Yτ ) = (e1(Yτ ), . . . , eM(Yτ ))
′ :

EP̃ [Vτ |Yτ ] ≈ e(M)(Yτ )
′ α̂(N).

Thus, the approximation takes the form of a series estimator for the conditional expectation.
General conditions for the joint convergence of such estimators are provided in Newey (1997).
Convergence of the risk measure then follows as in the previous subsection. We immediately
obtain:3

3Newey (1997) also provides conditions for uniform convergence and for asymptotic normality of series
estimators. We refer to his paper for details.
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Proposition 3.2 (Newey (1997)). Assume Var(Vτ |Yτ ) is bounded and that for every M,
there is a non-singular constant matrix B such that for ẽ(M) = B e(M) we have:

• The smallest eigenvalue of EP
[
ẽ(M)(Yτ )

′ ẽ(M)(Yτ )
′] is bounded away from zero uniformly

in M ;

• and there is a sequence of constants ξ0(M) satisfying supy∈Y ‖ẽ(M)(y)‖ ≤ ξ0(M) and
M = M(N) such that ξ0(M)2M/N → 0 as N →∞, where Y is the support of Yτ .

Moreover, assume there exist ψ > 0 and αM ∈ RM such that supy∈Y |Cτ (y)− e(M)(y)′ αM | =
O(M−ψ) as M →∞.

Then:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N +M−2ψ),

i.e., we have joint convergence in L2(Rd,B,PYτ ).

In this result, we clearly see the influence of the two approximations: The functional
approximation is reflected in the second part of the expression for the convergence rate.
Here, it is worth noting that the speed ψ will depend on the choice of the basis functions,
emphasizing the importance of this aspect. The first part of the expression corresponds to
the regression approximation, and in line with the second part of Proposition 3.1 it goes to
zero linearly in N.

The result provides general conditions that can be checked for any selection of basis func-
tions, although ascertaining them for each underlying stochastic model may be cumbersome.
Newey also provides explicit conditions for the highly relevant case of power series. In our
notation, they read:

Proposition 3.3 (Newey (1997)). Assume Var(Vτ |Yτ ) is bounded and that the basis func-
tions e(M)(Yτ ) consist of orthonormal polynomials, that Y is a Cartesian product of compact
connected intervals, and that a sub-vector of Yτ has a density that is bounded away from zero.
Moreover, assume that Cτ (y) is continuously differentiable of order s.

Then, if M3/N → 0, we have:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N +M− 2s/d),

i.e., we have joint convergence in L2(Rd,B,PYτ ).

Hence, for orthonormal polynomials, the smoothness of the conditional expectation is
important – which is not surprising given Jackson’s inequality. First-order differentiability is
required (s ≥ 1), and if s = 1, the convergence of the functional approximation will only be
of order M−2/d, where d is the state dimension. Clearly, a more customized choice of basis
functions may improve on this.

We note that although M/N enters the convergence rate, the general conditions require
ξ0(M)2M/N → 0 in general and M3/N → 0 for orthonormal polynomials, effectively to
control for the influence of estimation errors in the empirical covariance matrix of the re-
gressors. Moreover, for common financial models the assumption of a bounded conditional
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variance or bounded support of the stochastic variables are not satisfied. Benedetti (2017)
shows that if the distribution of the state process is known, convergence can still be ensured
at a rate of M2 log{M}/N → 0 under more modest – and in financial contexts appropriate
– conditions. We refers to his paper for details.

An important risk measure that does not fall in the class of convex risk measures – so
that Corollary 3.1 does not apply – is VaR, since it is the risk measure applied in regula-
tory frameworks, particularly Solvency II. However, convergence immediately follows from
Propositions 3.1-3.3:

Corollary 3.2. We have:

F
Ĉ

(M,N)
τ

(l) = P(Ĉ(M,N)
τ ≤ l)→ P(Cτ ≤ l) = FCτ (l), N →∞, M →∞, l ∈ R, and

F−1

Ĉ
(M,N)
τ

(α)→ F−1
Cτ

(α), N →∞, M →∞,

for all continuity points α ∈ (0, 1) of F−1
Cτ

. Moreover, under the conditions of Propositions
3.2 and 3.3, we have joint convergence.

Regarding the properties of the estimator beyond convergence, much rides on the quality
of the two approximations. With regards to the second approximation, it is well-known that
as the OLS estimate, Ĉ

(M,N)
τ is unbiased – though not necessarily efficient – for Ĉ

(M)
τ under

mild conditions (see, e.g., Sec. 6 in Amemiya (1985)). While this does not necessarily mean

that ρ(Ĉ
(M,N)
τ ) is unbiased for ρ(Ĉ

(M)
τ ), typically the approximation error due to variance

overshadows potential bias terms. For instance, following Gordy and Juneja (2010), it is
straightforward to show based on Proposition 3.1 that a bias term will enter the mean
squared error as O(N−2), whereas the convergence of the variance is of order N . The quality
of the first (functional) approximation, which is at the core of the proposed algorithm,
directly relates to the choice of basis functions.

4 Choice of Basis Functions

As demonstrated in Section 3.1, any set of independent functions will lead the LSM algorithm
to converge. In fact, for the LSM method for pricing non-European derivatives, the typical
choice for basis functions are polynomial families. And while the choice is important for
the pricing approximation (Glasserman, 2004, Sec. 8.6), several authors conclude based on
numerical tests that the approach appears robust for typical problems when including a
sufficiently large number of terms (see, e.g., Moreno and Navas (2003) and also the original
paper by Longstaff and Schwartz (2001)). As we argue in the Introduction, a number of
aspects differ in the risk measurement context considered here: enterprise risk models usually
are high-dimensional, so that including a sufficiently large number of higher-ordered terms
of all variables may not be feasible; also, the framework will be used for the evaluation of
numerous different positions, so that tailoring the functional approximation to a particular
payoff is not possible. Therefore, the choice of basis functions is not only potentially more
complex but also more crucial in the present context.
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4.1 Robust Basis Functions for a Model Framework

As illustrated in Section 2.1, we can identify capital – as a function of the state vector at the
risk horizon Yτ – for a cash flow model x within a certain model framework Y with the output
of the linear operator L applied to x: Cτ (Yτ ) = Lx(Yτ ) (Eq. (3)). As discussed in Section
3.2, the LSM algorithm, in turn, approximates Cτ by its linear projection on the subspace
spanned by the basis functions e(M)(Yτ ), P Cτ (Yτ ), where P is the projection operator.

For simplicity, in what follows, we assume that the basis functions are orthonormal in
L2(R,B,PYτ ). Then we can represent P as:

P · =
M∑
k=1

〈·, ek(Yτ )〉L2(PYτ ) ek.

Therefore, the LSM approximation can be represented via the finite rank operator LF = P L,
where we have:

LFx = P Lx =
M∑
k=1

〈Lx, ek(Yτ )〉L2(PYτ ) ek (8)

=
M∑
k=1

EP

[
ek(Yτ )

T∑
j=τ

EP̃ [xj(Yj)|Yτ ]

]
ek =

M∑
k=1

EP̃

[
ek(Yτ )

T∑
j=τ

xj(Yj)︸ ︷︷ ︸
=Vτ

]
ek

=
M∑
k=1

EP̃ [ek(Yτ )Vτ ]︸ ︷︷ ︸
αk

ek,

where the fourth equality follows by the tower property of conditional expectations.
It is important to note that under this representation, ignoring the uncertainty arising

from the regression estimate, the operator LF gives the LSM approximation for each model
x within the model framework. That is, the choice of the basis function precedes fixing a
particular cash flow model (payoff). Thus, we can define robust basis functions as a system
that minimizes the distance between L and LF , so that the approximation is minimal with
regards to all possible cash flow models within the framework (minimax robustness):

Definition 4.1. We call the set of basis functions {e∗1, e∗2, ..., e∗M} robust in L2(Rd,B,PYτ ) if:

{e∗1, e∗2, ..., e∗M} = arginf{e1,e2,...,eM}‖L− LF‖ = arginf{e1,e2,...,eM} sup
‖x‖=1

‖Lx− LFx‖.

As outlined above, choosing robust basis functions is particularly expedient in the context
of calculating risk capital. Unlike pricing a specific derivative security with a well-determined
payoff, capital may need to be calculated for subportfolios or only certain lines of business
for the purpose of capital allocation. Moreover, a company’s portfolio will change from
one calculation date to the next, so that the relevant cash flow model is in flux. The
underlying model framework, on the other hand, is usually common to all subportfolios since
the purpose of an economic capital framework is exactly the enterprise-wide determination of
diversification opportunities and systematic risk factors. Also, it is typically not frequently
revised. Hence, it is expedient here to connect the choice of basis functions to the framework
rather than a particular model (payoff).
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4.2 Robust Basis Functions for a Compact Valuation Operator

In order to derive robust basis functions, it is sufficient to determine the finite-rank operator
LF that presents the best approximation to the infinite-dimensional operator L. If L is a
compact operator, this approximation is immediately given by the singular value decompo-
sition (SVD) of L (for convenience, details on the SVD of a compact operator are collected
in the Appendix). More precisely, we can then represent L : H → L2(Rd,B,PYτ ) as:

Lx =
∞∑
k=1

ωk 〈x, sk〉ϕk, (9)

where {ωk} with ω1 ≥ ω2 ≥ . . . are the singular values of L, {sk} are the right singular
functions of L, and {ϕk} are the left singular functions of L – which are exactly the eigen-
functions of LL∗. The following proposition demonstrates that robust basis functions are
given by the left singular functions of L.

Proposition 4.1. Assume the operator L is compact. Then for each M, the left singular
functions of L {ϕ1, ϕ2, . . . , ϕM} ∈ L2(Rd,B,PYτ ) are robust basis functions in the sense of
Definition 4.1. For a fixed cash flow model, we obtain αk = ωk 〈x, sk〉.

Our finding that the left singular functions provide an robust approximation is related to
familiar results in finite dimensions. In particular, our proof is similar to the Eckart-Young-
Mirsky Theorem on low-rank approximations of an arbitrary matrix. A sufficient condition
for the compactness of the operator L is provided in Lemma 2.3.

To appraise the impact of the two approximations simultaneously, we can analyze the joint
convergence properties in M and N for the case of robust basis functions. Here, in general,
we have to check the conditions from Newey’s convergence result (Prop. 3.2). We observe
that the convergence rate associated with the first (functional) approximation depends on
the parameter ψ, which in the present context derives from the speed of convergence of the
singular value decomposition:

O(M−ψ) = inf
αM

sup
y∈Y
|Cτ (y)− e(M)(y)′ αM | ≤ sup

y∈Y
|Lx (y)− LF x (y)|

= sup
y∈Y

∣∣∣∣∣
∞∑

k=M+1

ωk 〈x, sk〉ϕk(y)

∣∣∣∣∣ . (10)

In particular, we are able to provide an explicit result in the case of bounded singular
functions.

Proposition 4.2. Assume Var(Vτ |Yτ ) is bounded and that the singular functions, {ϕk}∞k=1,
are uniformly bounded on the support of Yτ . Then, if M2/N → 0, we have:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N + ω2
M),

i.e., we have joint convergence in L2(Rd,B,PYτ ).
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Comparing this convergence rate for singular functions to the general case from Propo-
sition 3.2 and the orthonormal polynomial case from Proposition 3.3, we notice that the
second term associated with the first (functional) approximation now is directly linked to
the decay of the singular values. For integral operators, this rate depends on the smoothness
of the kernel k(x, y) (see Birman and Solomyak (1977) for a survey on the convergence of
singular values of integral operators). In any case, Equation (10) that directly enters Newey’s
convergence result illustrates the intuition behind the robustness criterion: To choose a ba-
sis function that minimizes the distance between the operators for all x, although in the
Definition we consider the L2-norm rather than the supremum.

The derivation of the SVD of the valuation operator of course depends on the specific
model framework. In the next subsection, we determine the SVD – and, thus, robust basis
functions – in the practically highly relevant case of Gaussian transition densities. Here,
robust basis functions correspond to Hermite polynomials of suitably transformed state vari-
ables and the singular values decay exponentially for d = 1 (Proposition 4.3), demonstrating
the merit of this choice.

4.3 Robust Basis Functions for Gaussian Transition Densities

In what follows, we consider a single cash flow at time T only, and we assume that (Yτ , YT )
are jointly Gaussian distributed. We denote the P̃-distribution of this random vector via:(

Yτ
YT

)
∼ N

[(
µτ
µT

)
,

(
Στ Γ
Γ′ ΣT

)]
, (11)

where µτ , µT , Στ , and ΣT are the mean vectors and variance-covariance matrices of Yτ and
YT , respectively, and Γ is the corresponding (auto) covariance matrix – which we assume to
be non-singular.

Denoting by g(x;µ,Σ) the normal probability density function at x with mean vector
µ and covariance matrix Σ, the marginal densities of Yτ and YT are πYτ (x) = g(x;µτ ,Στ )
and πYT (y) = g(y;µT ,ΣT ), respectively. Mapping these assumption to the previous notation
yields x = xT , L : H = L2(Rd,B, πYT )→ L2(Rd,B, πYτ ), and:

Cτ (Yτ ) = Lx(Yτ ) =

∫
Rd
xT (y) πYT |Yτ (y|Yτ ) dy,

where πYT |Yτ (y|x) denotes the transition density. In order to obtain robust basis functions,
the objective is to derive the SVD of L.

Lemma 4.1. We have for the conditional distributions:

YT |Yτ = x ∼ N
(
µT |τ (x),ΣT |τ

)
and Yτ |YT = y ∼ N

(
µτ |T (y),Στ |T

)
with transition density and reverse transition density:

πYT |Yτ (y|x) = g(y;µT |τ (x),ΣT |τ ) and πYτ |YT (x|y) = g(x;µτ |T (y),Στ |T ),

respectively, where µT |τ (x) = µT + Γ′Σ−1
τ (x − µτ ), ΣT |τ = ΣT − Γ′Σ−1

τ Γ, µτ |T (y) = µτ +
ΓΣ−1

T (y − µT ), and Στ |T = Στ − ΓΣ−1
T Γ′. Moreover, L is compact in this setting.
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Per Proposition 4.1, robust basis functions are given by the left singular functions, which
are in turn the eigenfunctions of LL∗. We obtain:

Lemma 4.2. The operator LL∗ and L∗L are integral operators:

LL∗f(·) =

∫
Rd
KA(·, y) f(y) dy and L∗Lf(·) =

∫
Rd
KB(·, x) f(x) dx,

where the kernels are given by Gaussian densities:

KA(x, y) = g(y;µA(x),ΣA) and KB(y, x) = g(x;µB(y),ΣB)

with

• µA(x) = µτ + A(x− µτ ), A = ΓΣ−1
T Γ′Σ−1

τ , and ΣA = Στ − AΣτA
′;

• µB(y) = µT +B(y − µT ), B = Γ′Σ−1
τ ΓΣ−1

T , and ΣB = ΣT −BΣTB
′.

We denote by EKA [·|x] and EKB [·|y] the expectation operators under the Gaussian densities
KA(x, ·) and KB(y, ·), respectively.

The problem of finding the singular values and the left singular functions therefore
amounts to solving the eigen-equations:

EKA [f(Y )|x] = ω2 f(x).

We exploit analogies to the eigenvalue problem of the Markov operator of a first-order multi-
variate normal autoregressive (MAR(1)) process studied in Khare and Zhou (2009) to obtain
the following:

Lemma 4.3. Denote by PΛP ′ the eigenvalue decomposition of:

Σ−1/2
τ AΣ1/2

τ = Σ−1/2
τ ΓΣ−1

T Γ′Σ−1/2
τ ,

where PP ′ = I and Λ is the diagonal matrix whose entries are the eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λd of A. For y ∈ Rd, define the transformation:

zP (y) = P ′Σ−1/2
τ (y − µτ ). (12)

Then for Y ∼ KA(x, ·), we have: EKA
[
zP (Y )|x

]
= Λ zP (x), VarKA

[
zP (Y )|x

]
= I − Λ2,

EπYτ
[
zP (Yτ )

]
= 0, and VarπYτ

[
zP (Yτ )

]
= I.

Similarly, denote the diagonalization Σ
−1/2
T BΣ

1/2
T = QΛQ′, where Q′Q = I and define

the transformation:
zQ(x) = Q′Σ

−1/2
T (x− µT ). (13)

Then for X ∼ KB(y, ·), we have: EKB
[
zQ(X)|y

]
= Λ zQ(y), VarKB

[
zQ(X)|y

]
= I − Λ2,

EπYT
[
zQ(YT )

]
= 0, and VarπYT

[
zQ(YT )

]
= I.

Therefore, for a random vector Y |x in Rd that is distributed according to KA(x, ·), the
components zPi (Y ) of zP (Y ) are independently distributed with zPi (Y ) ∼ N(λi z

P
i (x), 1−λ2

i ),
where zPi (x) is the i-th component of zP (x). Since eigenfunctions of standard Gaussian
distributed random variables are given by Hermite polynomials, the SVD follows immediately
from Lemma 4.3:
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Proposition 4.3. Denote the Hermite polynomial of degree j by hj(x) (Kollo and Rosen,
2006):

h0(x) = 1, h1(x) = x, hj(x) =
1√
j

(
xhj−1(x)−

√
j − 1hj−2(x)

)
, j = 2, 3, ...

The singular values of L in the current (Gaussian) setting are given by:

ωm = Πd
i=1λ

ki/2
i , (14)

where m = (k1, ..., kd) ∈ Nd
0 is a multi-index, Nd

0 is the set of d-dimensional non-negative
integers, and the corresponding right and left singular functions are:

sm(x) = Πd
i=1hki(z

Q
i (x)) and ϕm(y) = Πd

i=1hki(z
P
i (y)),

respectively.

Combining the insights from Proposition 4.1 and Proposition 4.3, we immediately obtain:

Corollary 4.1. Let (mk)k∈N be a reordering of {m} = {(k1, ..., kd) ∈ Nd
0} such that: ωm1 ≥

ωm2 ≥ ωm3 ≥ . . . Then, in the current setting, a robust choice for the basis functions for the
LSM algorithm in the sense of Definition 4.1 is given by:

ϕk = ϕmk , k = 1, 2, 3, . . .

In the univariate case (d = 1), A = λ1 is the square of the correlation coefficient between
Yτ and YT – so that the singular values are simply powers of this correlation, decaying
exponentially. Thus, the SVD takes the form (Abbe and Zheng, 2012):

Lx(Yτ ) =
∞∑
k=1

(Corr(Yτ , YT ))k−1

〈
xT , hk−1

(
YT − µT

Σ
1/2
T

)〉
πYT

hk−1

(
Yτ − µτ

Σ
1/2
τ

)
.

In particular, robust basis functions are given by Hermite polynomials of the normalized
Markov state – although other choices of polynomial bases will generate the same span so
that the results will coincide.

In the general multivariate case, it is clear from Proposition 4.3 that the singular values
of L are directly related to eigenvalues of the matrix A (or, equivalently, B), and there are(
d−1+l
d−1

)
vectors of indices m such that

∑
i ki = l in Equation (14) (stars and bars problem).

The order of these singular values will determine the order of the singular functions in the
SVD (9). In particular, after ϕ1(x) = 1 with coefficient equaling 〈xT , 1〉 = E[xT ], the first
nontrivial basis function is given by the singular function associated with the largest singular
value – which according to (12) is a component of the linearly transformed normalized state
vector. The subsequent basis functions depend on the relative magnitudes of the different

singular values. For instance, while for 1 > λ1 > λ2 clearly
√
λ1 >

√
λ1

2
= λ1 and similarly

for λ2, it is not clear whether λ1 >
√
λ2 or vice versa – and this order will determine

which combination of basis functions is robust. Thus, in the multi-dimensional case – and
particularly in high-dimensional settings that are relevant for practical applications – is where
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the analysis here provides immediate guidance. Even if a user chooses the same function
class (Hermite polynomials) or function classes with the same span (e.g., other polynomial
families), it is unlikely that a näıve choice will pick the suitable combinations – and this
choice becomes less trivial and more material as the number of dimensions increases.

From Proposition 3.1, we obtain sequential convergence. Joint convergence for (a class
of) models x can be established by following Newey’s approach from Propositions 3.2/3.3, or
by relying on the results from Benedetti (2017) in case the parameters are known. While the
Hermite polynomials do not satisfy the uniformly boundedness assumptions from Proposition
4.2, from Proposition 3.2 and the discussion following Proposition 4.2, it is clear that the
convergence rate of the functional approximation is linked to the decay of the singular values
(O(ω2

M) in Prop. 4.2). In the current setting we have (Prop. 4.3):

ω2
M = ω2

mM
=

d∏
i=1

λkii ≤
d∏
i=1

max
1≤i≤d

{λi}ki = max
1≤i≤d

{λi}
∑
i ki ,

where max1≤i≤d{λi} < 1 and there are
(
d−1+l
d−1

)
vectors m such that

∑
i ki = l. Thus, as in

Proposition 3.3, the convergence is slowing down as the dimension d of the state process
increases, although the relationship here is exponential rather than polynomial.

In models with non-Gaussian transitions, while an analytical derivation may not be
possible, we can rely on numerical methods to determine approximations of the robust basis
functions. For instance, Huang (2012) explains how to solve the associated integral equation
by discretization methods, which allows to determine the singular functions numerically, and
Serdyukov et al. (2014) apply the truncated SVD to solve inverse problems numerically. As
an alternative, in what follows we rely on the ideas from the Gaussian setting to derive
approximations to robust basis functions in arbitrary settings.

4.4 Approximations of Robust Basis Functions in General Set-
tings

In the Gaussian setting from the previous section, the robust basis functions are sorted
according to the singular values of L, which with (14) are given by products of the eigenvalues
of:

A = ΓΣ−1
T Γ′Σ−1

τ .

Here A appears in µA and ΣA, which expresses how the current state affects the distribution
of current states when going forward and backward in time (τ → T → τ). The leading
eigenvectors of A thus provide the most relevant directions in the multi-dimensional state
space for evaluating L – or, in other words, the most important directions in spanning the
image space of the valuation operator.

The same intuition carries over to more general situations. Let:

Ȳ =


Yτ
Yτ+1

...
YT

 with EP̃[Ȳ ] =

(
µτ
µ̄

)
∈ Rd+d(T−τ) and CovP̃[Ȳ ] =

(
Στ Γ̄
Γ̄′ Σ̄

)
,
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where Γ ∈ Rd×d(T−τ) and Σ̄ ∈ Rd(T−τ)×d(T−τ). Then, proceeding analogously to the Gaussian
case above, it is possible to derive approximations to robust basis functions by considering
Ā = Γ̄Σ̄−1Γ̄′Σ−1

τ and sample values from cash flow simulations:

Algorithm 4.1. For given N and M :

• Generate N independent paths of the state process, (Y
(i)
t )t=τ,τ+1,...,T , 1 ≤ i ≤ N , under

P̃.

• Determine the sample mean and sample covariance matrix of Ȳ (i):

ˆ̄µ =

(
µ̂τ
ˆ̄µ

)
, Ĉov(Ȳ ) =

(
Σ̂τ

ˆ̄Γ
ˆ̄Γ′ ˆ̄Σ

)
.

• Determine the eigenvalue decomposition ˆ̄P ˆ̄Λ ˆ̄P of Σ̂
−1/2
τ

ˆ̄AΣ̂
1/2
τ = Σ̂

−1/2
τ

ˆ̄Γ ˆ̄Σ−1 ˆ̄Γ′Σ̂
−1/2
τ ∈

Rd×d.

• Set ω̄m = Πd
i=1λ̂

ki/2
i for a multi-index m = (k1, ..., kd) ∈ Nd

0, where λ̂i is the i-th

diagnonal elemement of ˆ̄Λ, and determine m1, ...,mM as the M largest elements of
(ωm)m∈Nd0 .

• Set:
ϕj(y) = ϕmj(y) = Πd

i=1hk(mj)i

([
ˆ̄P ′Σ̂−1/2

τ (y − µ̂τ )
]
i

)
,

where k
(mj)
i are the entries of mj, j = 1, ...,M .

Of course, the generated sample paths (Y
(i)
t )t=τ,τ+1,...,T , 1 ≤ i ≤ N may also be used

for determining the cumulative discounted cash flows in (6) in the LSM algorithm. The
key idea behind Algorithm 4.1 is an approximation of the (joint) distribution of the state
vector entries via a Gaussian distribution by focussing on the first and second moments,
and then leveraging the results from the Gaussian case (Corollary 4.1). This is akin to Lin-
ear/Quadratic Discriminant Analysis for classification (Hastie et al., 2009, Sec. 4.3), where
the class densities of the features are approximated by a multivariate Gaussian distribution
to obtain approximations to the (optimal) Bayes classifier.

5 Application

To demonstrate the LSM algorithm and its properties, we consider an example from life insur-
ance: a Guaranteed Minimum Income Benefit (GMIB) within a Variable Annuity contract.
As indicated in the Introduction, the LSM algorithm is particularly relevant in insurance,
especially in light of the new Solvency II regulation that came into effect in 2016. Here,
the so-called Solvency Capital Requirement takes the form of a 99.5% VaR of firm capital
at the risk horizon τ = 1. And while our application certainly does not feature the level of
complexity of practical enterprise risk measurement frameworks, it serves to illustrate some
of the key tradeoffs, particularly with regards to the choice of basis functions.
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5.1 Variable Annuities with GMIBs

Within a Variable Annuity (VA) plus GMIB contract, at maturity the policyholder has the
right to choose between a lump sum payment amounting to the current account value or
a guaranteed annuity payment determined by a guaranteed rate applied to a guaranteed
amount. GMIBs are popular riders for VA contracts: Between 2011 and 2013, roughly 15%
of the more than $150 billion worth of Variable Annuities sold in the US contained a GMIB.4

Importantly, GMIBs are subject to a variety of risk factors, including fund (investment) risk,
mortality risk, and – as long term contracts – interest rate risk.

We consider a large portfolio of different VA plus GMIB contracts indexed by j with
policyholder (cohort) age x, policy maturities Tj, τ < T1 < T2 < . . ., and guaranteed

amounts G
(j)
Tj

. The payoff of VA j at time Tj in case of survival is given by:

max

{
STj ,

G
(j)
Tj

a∗x+Tj
(0)

ax+Tj(Tj)

}
, (15)

where STj is the underlying account value which evolves according to a reference asset net
various fees (which we ignore for simplicity), ax+Tj(Tj) denotes the time Tj value of an
immediate annuity on an (x + Tj)-year old policyholder of $1 annually, and a∗x+Tj

(0) gives
the guaranteed annuity rate at time zero.

We rely on a model for the financial environment that features stochastic interest rates
and a stochastic evolution of mortality. Specifically, we assume the reference asset St, the
interest (short) rate rt, and the force of mortality (hazard rate) µx+t for an (x + t)-aged
individual at time t evolve according to the following stochastic differential equations (SDEs)
under P:

dSt = St
(
mdt+ σS dW

S
t

)
, (16)

drt = α(γ − rt) dt+ σr dW
r
t , (17)

dµx+t = κµx+t dt+ ψ dW µ
t , (18)

where m is the instantaneous rate of return of the risky asset and σS is the asset volatility;
α, γ, and σr are the speed of mean reversion, the mean reversion level, and the interest
rate volatility in the Vasicek (1977) interest rate model, respectively; κ is an instantaneous
rate of increment of mortality (Gompertz exponent) and ψ is the volatility of mortality;
and W S

t , W r
t , and W µ

t are standard Brownian motions under P with dW S
t dW

r
t = ρ12 dt,

dW S
t dW

µ
t = ρ13 dt, and dW r

t dW
µ
t = ρ23 dt.

For evaluating the present value of future benefits at the risk horizon τ as in Equation (2),
we need to also contemplate the dynamics under the risk-neutral measure Q. For simplicity,
we assume a constant risk premium λ for interest rate risk, so that we obtain similar dynamics
under Q, with m being replaced by rt in (16) and γ being replaced by γ̄ = γ − λσr/α in
(17). To directly apply our LSM setting from previous sections, we change the numéraire
process to a pure endowment (survival benefit) with maturity T1 and maturity value one on
[τ, T1), to a pure endowment with maturity T2 on [T1, T2), and so on. The value of VA j at

4Source: Fact Sheets by the Life Insurance and Market Research Association (LIMRA).
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time t ∈ [Tj−1, Tj), where we set T0 = τ , is then:

V (t) = Tj−tEx+t EQEj

[
max

{
STj ,

G
(j)
Tj /a∗x+Tj (0) × ax+Tj(Tj)

}∣∣∣∣Yt] , (19)

where Tj−tEx+t is the value of the pure endowment contract with maturity Tj at time t and
QEj is the risk-neutral measure using the pure endowment contract with maturity Tj as the
numéraire. By successively applying (19) and adding up the values of the different VAs, we
can derive the portfolio value at the risk horizon τ . We refer to Section 5.3 for more details
on this procedure.

Under our assumptions, since (rt) and (µt) are affine, we obtain:

Tj−tEx+t = EQ
[
e−

∫ Tj
t rs+µx+s ds|Yt

]
= A(t, Tj) exp [−Br(t, Tj)rt −Bµ(t, Tj)µx+t] , (20)

where Br(·, ·), Bµ(·, ·), and A(·, ·) are given in the Appendix. Applying Itô’s formula, the
dynamics of the pure endowment price are (here, W̃ ·

t denote Brownian motions under Q):

dTj−tEx+t = Tj−tEx+t

[
(rt + µx+t)dt− σrBr(t, Tj)dW̃

r
t − ψBµ(t, Tj)dW̃

µ
t

]
,

and from Brigo and Mercurio (2006), the new dynamics of Yt under QEj for Tj−1 ≤ t ≤ Tj
become:

dSt = St
(
(rt − ρ12σSσrBr(t, Tj)− ρ13σSψBµ(t, Tj)) dt+ σS dZ

S
t

)
, (21)

drt =
(
α(γ̄ − rt)− σ2

rBr(t, Tj)− ρ23σrψBµ(t, Tj)
)
dt+ σrdZ

r
t , (22)

dµx+t =
(
κµx+t − ρ23σrψBr(t, Tj)− ψ2Bµ(t, Tj)

)
dt+ ψ dZµ

t , (23)

where ZS
t , Zr

t , and Zµ
t are standard Brownian motions under QEj with dZS

t dZ
r
t = ρ12 dt,

dZS
t dZ

µ
t = ρ13 dt, and dZr

t dZ
µ
t = ρ23 dt. Moreover, we have:

ax+Tj(Tj) =
∞∑
k=1

kEx+Tj , and a∗x+Tj
(0) =

∞∑
k=1

Tj+k
Ex/

TEx

is calculated based on forward mortality rates (Bauer et al., 2012a).
For our numerical experiments, we set the model parameters using representative values.

The initial price of the risky asset is one hundred and for the risky asset parameters we
assume m = 5% (instantaneous rate of return) and σS = 18% (asset volatility). The initial
interest rate is assumed to be r0 = 2.5%, α = 25% (speed of mean reversion), γ = 2%
(mean reversion level), σr = 1% (interest rate volatility), and λ = 2% (market price of
risk). For the mortality rate, we set x = 55 (age of the policyholder), µ55 = 1% (initial
value of mortality), κ = 7% (instantaneous rate of increment), and ψ = 0.12% (mortality
volatility). For correlations, we assume ρ12 = −30% (correlation between asset and interest
rate), ρ13 = 6% (correlation between asset and mortality rate), and ρ23 = −4% (correlation
between interest rate and mortality rate).



An LSM Approach to the Estimation of Enterprise Risk 21

5.2 Gaussian Case: Single Roll-Up GMIB

We start by considering a single VA with a simple roll-up benefit that compounds the initial
investment at a guaranteed rate mg. Hence, we set T = T1, QE1 = QE, and:

G
(1)
T1

= GT = S0 × (1 +mg)
T . (24)

For our numerical experiments, we assume a guaranteed rate of return mg = 2%. This
implies a probability that ST > b ax+T (T ) of approximately 40%. Also, we set the risk
horizon τ = 1 in line with the Solvency II regulation.

For the calculation of the risk capital, we ignore unsystematic mortality risk arising from
finite samples and stochastic investments. Thus, it suffices to use the three-dimensional state
process Yt = (qt, rt, µx+t)

′, where qt = log{St} denotes the log-price of the risky asset. We
estimate the distribution of Cτ via the LSM algorithm. In particular, the cash flow functional
in the current setting is x = xT with:

xT (YT ) = −V (T ) = −max{eqT , S0×(1+mg)T /a∗x+T (0) × ax+T (T )}

and
Cτ = Lx(Yτ ) = T−τEx+τ (Yτ )EQE [xT (YT )|Yτ ] .

We have:

Lemma 5.1. From (16)-(18) and (21)-(23), the joint (unconditional) distribution of Yτ and
YT is: (

Yτ
YT

)
∼ N

[(
µτ
µT

)
,

(
Στ Γ
Γ′ ΣT

)]
,

where we refer to the proof in the Appendix for explicit expressions of µτ , µT , Στ etc. in
terms of the parameters.

Thus we can apply the results from Proposition 4.3 to derive robust basis functions.

LSM using Robust Basis Functions.

From Proposition 4.3, for any non negative integer vectorm = (k1, k2, k3), ωm = λ
k1/2
1 λ

k2/2
2 λ

k3/2
3

is a singular value of L, with corresponding left singular function:

ϕm(·) = hk1(z
P
1 (·))hk2(zP2 (·))hk3(zP3 (·)),

where hj(·) Hermite polynomial of degree j. Thus, following Corollary 4.1, in order to
find the set of M robust basis functions for the LSM algorithm, we need to calculate ωm
for |m| ≤ M , order them, and then determine the associated functions. With the above
parameters, from Lemma 4.3, we obtain λ1 = 0.1490, λ2 = 0.0671, and λ3 = 0.0004 by
solving for the eigenvalues A, and we have:zP1 (yτ )

zP2 (yτ )
zP3 (yτ )

 = P ′Σ
−1/2
τ (y − µτ ) =

− 0.0981 (qτ − 4.6390) − 0.2969 (rτ − 0.0239) +804.9935 (µx+τ − 0.0107)
5.7992 (qτ − 4.6390) + 23.6115 (rτ − 0.0239) −29.9839 (µx+τ − 0.0107)
− 0.5878 (qτ − 4.6390) − 115.7881 (rτ − 0.0239) −27.0757 (µx+τ − 0.0107)


Two observations are immediate: First, each first-order robust basis function is a linear

combination of the state variables. Hence, unlike when sequentially choosing polynomials in



An LSM Approach to the Estimation of Enterprise Risk 22

each state variable, the question is not what component is most relevant but rather which
direction in state variable space is most significant. Clearly, the latter question is more
general and has advantages particularly when the state variable space is high-dimensional.
Second, higher-order robust basis functions may enter before going through all first-order
combinations. Indeed, ω(2,0,0) = λ1 >

√
λ3 = ω(0,0,1), so that the first four robust basis

functions are (1, zP1 (·), zP2 (·), 1√
2
((zP1 (·))2 − 1))′, as opposed to, e.g., (1, qτ , rτ , µx+τ )

′ when
choosing M = 4 monomials.

Estimated Density under Different Number of Basis Functions, N=3,000,000
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Figure 1: Empirical densities of V (τ) based on N = 3, 000, 000 Monte Carlo realizations;
“exact” and using the LSM algorithm with M singular functions in the approximation.

We implement the LSM approximation to the capital variable and vary the number of
robust basis functions. In Figure 1, we provide an empirical density based on N = 3, 000, 000
and approximate realizations calculated via the LSM algorithm for different numbers of
basis functions M .5 As is evident from the figure, a small number of basis function does
not produce satisfactory results. However, the approximation becomes closer to the “exact”
density as M increases, in line with our convergence results from Section 3.

Comparison to Conventional Basis Functions.

It is instructive to consider the functional approximation from Figure 1 based on robust basis
functions for the case M = 4:

EQE [max{eqT , ax+T (T )}|Yτ ] ≈ 173.7539− 5.1805 zP1 (yτ ) + 15.6972 zP2 (yτ ) + 1.0281 [
1√
2

(zP1 (yτ )2 − 1)]

= −162.194 + 92.704 qτ + 0.007 q2τ + 375.7 rτ + 0.042 qτrτ + 0.064 r2τ

−14, 204.8µx+τ − 114.768 qτµx+τ − 347.528 rτµx+τ + 471, 074µ2
x+τ .

In contrast, when using M = 4 monomials in the LSM algorithm (again N = 3, 000, 000),
we obtain:

EQE [max{eqT , ax+T (T )}|Yτ ] ≈ −205.605 + 90.515 qτ + 346.019 rτ − 4, 533.644µx+τ .

5Since it is impossible to obtain the exact loss distribution at the risk horizon, we consider the estimated
loss distribution obtained from the LSM algorithm with M = 37 monomials and N = 40× 106 simulations
as “exact.”
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N = 100, 000 N = 3, 000, 000
Div. Singular Monomials Singular Monomials

M = 4
KS 2.52× 10−2 2.86× 10−2 2.41× 10−2 2.77× 10−2

KL 2.17× 10−4 2.32× 10−4 2.13× 10−4 2.28× 10−4

JS 7.43× 10−3 7.68× 10−3 7.36× 10−3 7.62× 10−3

M = 6
KS 7.91× 10−3 9.60× 10−3 2.24× 10−3 5.79× 10−3

KL 1.09× 10−5 4.93× 10−5 4.53× 10−6 4.31× 10−5

JS 1.62× 10−3 3.52× 10−3 1.06× 10−3 3.29× 10−3

M = 12
KS 8.28× 10−3 8.26× 10−3 1.49× 10−3 1.53× 10−3

KL 1.43× 10−5 1.55× 10−5 6.02× 10−7 1.74× 10−6

JS 1.84× 10−3 1.93× 10−3 3.82× 10−4 6.58× 10−4

Table 1: Statistical divergence measures between the empirical density function based on
the “exact” realizations and the LSM approximation using different basis functions; mean
of 300 runs with N = 3, 000, 000 sample paths each.

We note that the latter regression result is not linked to the choice of monomials: Aside from
numerical errors, we will obtain the same results when using orthonormal polynomial families
with only first-order terms, since the span is the equivalent. Also, both approximations have
the same degrees of freedom (M = 4). The reason the fit has a different form is that the
first four robust basis functions include higher order terms, since their composition casts a
broader net.

This results in a better functional approximation. To illustrate, in Table 1 we report sta-
tistical differences to the “exact” distribution according to various statistical divergence mea-
sures for singular functions and monomials for various numbers of simulations N and basis
functions M. Here, the set of monomial basis functions when M = 6 is (1, qτ , rτ , µx+τ , q

2
τ , r

2
τ ),

and for M = 12 we include all second-order terms and (q3
τ , r

3
τ ). For each combination, we re-

port three common statistical divergence measures: the Kolmogorov-Smirnov statistic (KS),
the Kullback-Leibler divergence (KL), and the Jensen-Shannon divergence (JS). We report
the mean of three-hundred runs. We find that the singular functions significantly outperform
the monomials, particularly for the larger number of sample paths (N = 3, 000, 000), with a
relative difference up to an order of magnitude for the KL divergence. This result documents
the importance of choosing appropriate basis functions, and the virtue of singular functions
as the tangible and expedient choice.

This insight is even more relevant when considering that it is necessary to choose which
higher-oder monomials to include – and indeed the choice in Table 1 turns out to be favorable.
To illustrate, Figure 2a provides box-and-whisker plots for the KL divergence for 15 different
possible combinations of six monomials, where in addition to the first-order terms for each
of the state variables we include all possible combinations of two second-order terms.6 The
plots are based on three-hundred runs of N = 3, 000, 000 samples (corresponding KS and JS

6Here and in what follows, the box presents the area between the first and third quartile, with the
inner line placed at the median; the whisker line spans samples that are located closer than 150% of the
interquartile range to the upper and lower quartiles, respectively (Tukey box-and-whisker plot).



An LSM Approach to the Estimation of Enterprise Risk 24

0.00000

0.00005

0.00010

0.00015

0.00020

S C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Combinations

K
L

Box−and−Whisker plot for KL divergences

(a) KL

132

134

136

138

140

S C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Combinations

V
a
R

Box−and−Whisker plot for VaR at 99.5%

(b) VaR at 99.5%

Figure 2: Box-and-whisker plots for the KL divergence and 99.5% VaR calculated using
different basis functions with M = 6; based on 300 runs with N = 3, 000, 000 sample paths
each.
(Higher-oder terms: C1: q2τ , r

2
τ ; C2: q2τ , µ

2
x+τ ; C3: q2τ , qτ rτ ; C4: q2τ , qτµx+τ ; C5: q2τ , rτµx+τ ; C6: r2τ , µ

2
x+τ ; C7: r2τ , qτ rτ ; C8:

r2τ , qτµx+τ ; C9: r2τ , rτµx+τ ; C10: µ2
x+τ , qτ rτ ; C11: µ2

x+τ , qτµx+τ ; C12: µ2
x+τ , rτµx+τ ; C13: qτ rτ , qτµx+τ ; C14: qτ rτ , rτµx+τ ; C15:

qτµx+τ , rτµx+τ ).

box-plots are provided in Figure 6 in the Appendix). Again, we find that singular functions
significantly outperform all combinations of monomials, and the differences can be drastic,
particularly when not including the square of the log-price of the risky asset (combinations
C6-C15). While some of the combinations may be unrealistic choices (e.g., those including
combinations with the mortality rate), including a squared term if the interest rate and a
combination of interest rate and the log-price of the risky asset (C7) may seem reasonable
ex-ante. Importantly, it will be difficult to develop intuition on “reasonable” choices in
high-dimensional enterprise risk measurement frameworks employed in practice.

We note that these findings with regards to the superior performance of the singular
functions are not driven by the specific payoff function: As discussed in detail in Section
4, our notion of robustness is tied to the model framework rather than a specific cash flow
model. In the Appendix, we include analyses based on modified payoffs, where we adjust
guaranteed amount GT . The results are analogous: Singular functions perform better than
monomials, and the difference can be substantial.

M vs. N: The tradeoff between the approximations.

A second observation from Table 1 is that, in line with Figure 1, increasing the number of
basis functions M generally yields closer approximations of the “true” distribution. However,
an exception is the transition from M = 6 to M = 12 singular functions for N = 100, 000
sample paths, where the approximation worsens. The reason is the interplay between the
number of basis functions M and samples N that is emphasized in Section 3.2: The conver-
gence rate in Proposition 3.3 is a function of M and N, and increasing M while keeping N at
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Figure 3: Box-and-whisker plots for the 10-fold cross-validated number of basis function M
and the resulting KL divergence; based on 500 runs.

the same level, although yielding a closer functional approximation (second term), adversely
affects the regression approximation. For the monomials, on the other hand, adding terms
always decreases the divergence in Table 1, so that generally both aspects in the conver-
gence rate are at work, with either of them dominating in some cases. This demonstrates
that choosing the right number M given a numerical budget (N) is not trivial. Indeed,
since N will have to grow as M increases, given a fixed computational budget, feeding the
algorithm with a very large number of basis functions will be futile.

A common approach to navigate this tradeoff is to rely on cross-validation (CV) (Hastie
et al., 2009, Chap. 7). In Figure 3a, we present results based on 10-fold CV for choosing the
number of basis functions (monomials or singular functions) based on five hundred runs and
N = 50, 000 and N = 1, 000, 000. More precisely, for each run, the data is separated into
ten folds and then the root-mean-square-errors (RMSE) of the predictions for the hold-out
fold is calculated when fitting the regression using the remaining nine folds; the ten RMSEs
are averaged to produce 10-fold CV RMSE. We report the M that leads to the smallest
CV RMSE for each run. For the monomials, we go through the terms by order, where we
sequence higher order terms by first considering qτ , then rτ , and then µx+τ . Figure 3b shows
the KL divergence resulting from the cross-validated M in each run.

The cross-validated M for N = 50, 000 are generally lower than for N = 1, 000, 000,
which is not surprising given our observations on the M vs. N tradeoff. Moreover, the
cross-validated M is typically lower for the singular functions, due to the improved func-
tional approximation. As a consequence, the fit is less dispersed for singular functions than
for monomials, which is evident from the distribution of the KL divergence in Figure 3b
being more concentrated. However, even though the chosen M is usually lower for singular
functions, the approximation remains closer: the KL divergence also is lower on average.
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Figure 4: Box-and-whisker plots for 99.5% VaR calculated using the LSM algorithm with
different numbers of basis functions M ; the left-hand panel is based on 1,500 runs with
N = 3, 000, 000 sample paths each. The right-hand plot is also based on 1,500 runs and
different choices for N and M .

Risk measure estimation.

One of the key take-aways from the foregoing analyses is that a significant number of basis
functions M is necessary to obtain an accurate approximation to the capital distribution.
For instance, panel (b) in Figure 2 shows that the “exact” VaR estimate lies outside the
whiskers for the singular value functions as well as for most of the monomial combinations –
and when it is inside the whiskers that appears to happen rather arbitrary. For larger choices
for M , the situation improves. To illustrate, in Figure 4a, we show box-and-whisker plots of
99.5% VaR LSM estimates for singular functions as well as monomials, using N = 3, 000, 000
sample paths each. Again, the singular functions outperform the monomials, although the
difference is less pronounced that when focussing on the entire distribution. The reason
is that the LSM algorithm is – and the basis functions are – tailored to approximate the
distribution, and not a specific risk measure. We will return to this point in our Conclusion,
where we depict a potential avenue of how to improve the situation when targeting a specific
risk measure.

From Figure 4a, we also notice that the central estimate does not markedly improve
when going from M = 12 to M = 20 singular basis functions. It appears that for M = 12,
the functional approximation is sufficiently accurate even in this tail region, and adding
additional terms does not improve on the central estimate. Indeed, the key issue here is the
dispersion of the estimates. For instance, for M = 12 singular functions, the whiskers based
on the different runs span roughly 139.1 to 140.5, so the lengths is 1.4 or roughly 1% of
the central estimate. Given the usual scale of capital requirements in the financial services
industry, the cost for an additional percent of required capital is substantial. And, the
whisker plots become wider as the number of basis functions increases (roughly [139, 140.7]
for M = 20). The dispersion becomes even larger when decreasing N , as is illustrated in
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Panel 4b. For N = 100, 000, the length of the whisker plot amounts to more than 5% of the
central estimate and it increases as the number of basis functions M increases. This is again
linked to the N vs. M tradeoff discussed above.

An alternative way of managing this tradeoff is to rely on regularized regression ap-
proaches (Hastie et al., 2009, Chap. 5), although their application in the present context is
not without problem. To elaborate, regularized regression approaches generally introduce
some bias for a reduction in variance. And since the regularization parameter is chosen so
as to minimize the mean-squared prediction error across all realizations, it is not surprising
that the predictions may worsen in a certain area of the distribution – which may cause
issues when estimating tail risk measures. To illustrate, in the Appendix, we repeat our
VaR estimations for M = 16 basis functions – using both, singular functions and monomials
– where instead of OLS, we employ ridge regression to fit the approximation (see Figures
7a and 9 in part B). We find that relying on a regularized regression for estimating VaR
can indeed be precarious, particularly for monomials. For the singular functions, the impact
on the VaR estimate is limited, because overall there is very little change in the estimates
relative to OLS – whereas for the monomial basis functions, the estimates are zooming in
on the “wrong” target.

5.3 General Case: Multiple Complex GMIBs

We now consider two VAs with maturities T1 and T2, T2 > T1, with look-back (ratchet) and
Asian guarantee features, respectively, issued to the same (cohort of) policyholders aged x.
More precisely, we set the guaranteed amounts as:

G
(1)
T1

= max
0≤u≤T1

{Su} and G
(2)
T2

=
1

T2

∫ T2

0

Su du.

Hence, it is necessary to consider the five-dimensional state variable Yt = (St,Mt, At, rt, µx+t)
′,

where Mt = max0≤u≤t{Su} and At = 1
t

∫ t
0
Su du. In particular, we no longer have Gaussian

distributions, so it is not possible to rely on Section 4.3 in the present application. However,
it is possible to rely on Algorithm 4.1 from Section 4.4 to obtain approximations for robust
basis functions.
We proceed as follows: For each i = 1, . . . , N :

• We simulate Y
(i)
tk

on [0, τ ] using an Euler discretization of (16)-(18), tk = ∆× k and a
step size ∆ = 1/240. We update Mtk and Atk according to:

Mtk = max{Mtk−1
, Stk} and Atk =

(k − 1)Atk−1
+ Stk

k
. (25)

• Starting with Y
(i)
τ , we simulate Y

(i)
tk

on [τ, T1] using an Euler discretization of (21)-(23)
setting Tj = T1, where we update Mtk and Atk according to (25).

• Starting with Y
(i)
T1

, we simulate Y
(i)
tk

on [T1, T2] using an Euler discretization of (21)-(23)
setting Tj = T2, where we update Mtk and Atk according to (25).
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• We determine the sample covariance matrix of Ȳ (i) = (Y
(i)
τ

′
, Y

(i)
T1

′
, Y

(i)
T2

′
), i = 1, . . . , N ,

and determine approximations of robust basis functions ϕ1, . . . , ϕM as in Algorithm
4.1.

• In each path, we determine the (discounted) payoff via:

V (i)
τ = T1−τEx+τ (Y

(i)
τ ) max{S(i)

T1
, G

(1,i)
T1
}+T1−τEx+τ (Y

(i)
τ ) T2−T1Ex+T1(Y

(i)
T1

) max{S(i)
T2
, G

(2,i)
T2
}.

We can then obtain approximations for the distribution of Cτ by regressing V
(i)
τ on

(ϕ1(Y (i)
τ ), . . . , ϕM(Y (i)

τ )), i = 1, . . . , N,

or another set of basis functions. We set T1 = 10 and T2 = 15 in our numerical experiments.

Approximations to Robust Basis Functions.

In this case, the (ordered) eigenvalues of ˆ̄A are:

(λ̂1, λ̂2, λ̂3, λ̂4, λ̂5) = (0.3115, 0.1735, 0.0064, 0.0038, 0.0001).

Thus, as in the previous application, functions including higher-order combinations of the
first and second components of zP occur before other first-order terms. For instance, the
third (zP3 ) and fourth (zP4 ) first-order terms occur as robust basis function nine and eleven,
respectively.

Comparison of LSM with Conventional Basis Functions.

Since there now are five state variables, it is not trivial to consider polynomials basis functions
with higher degrees. For instance, there are 20 monomials up to second degree, and 56
monomials up to third degree. In contrast, with the robust basis functions, we start to include
higher order terms starting with the third basis function (ϕ3(Yτ ) = 1√

2
(zP1 (Yτ )

2−1), ϕ5(Yτ ) =
1√
6
(zP1 (Yτ )

3 − 3zP1 (Yτ ))), so they efficiently capture non-linear effects.
As before, this results in a superior functional approximation. Figure 5 shows box-and-

whisker plots for the KL divergences as well as the 99.5% VaR under approximately robust
basis functions and monomials (KS and JS results are provided in the Appendix, Figure 10).7

Here, for monomials, we used the “best” combination of higher-order terms that, similarly
to the previous application, first include higher order terms in stock price and interest rate.
All implementations are based on N = 1, 000, 000, and distributions are obtained from
five hundred runs. Again, we find that the approximately robust basis functions uniformly
outperform the polynomials. As before, the difference is particularly pronounced in the KL
case, which consider the entire distribution, although the superiority also manifests for VaR.

7The (assumed) exact density is obtained from N = 20, 000, 000 and M = 56 monomials including a
constant function (which means that we use all monomials up to degree three). The “exact” VaR at 99.5%
at the risk horizon (τ = 1) is then 346.8318.
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Figure 5: Box-and-whisker plots for the KL divergence and 99.5% VaR calculated using
different basis functions and different M ; based on 500 runs with N = 1, 000, 000 sample
paths each.

6 Conclusion

We discuss a Least-Squares Monte Carlo (LSM) algorithm for estimating financial capital in
nested valuation settings. The algorithm relies on functional approximations of conditional
expected values and least-squares regression. As a key contribution, we discuss the choice of
basis functions in the functional approximation. Specifically, we show that the left singular
functions of the valuation operator that maps cash flows to capital present robust basis
functions for a model framework. We discuss the derivation of robust basis functions. Our
numerical illustrations document that the algorithm can provide viable results at relatively
low computational costs.

Various extensions are possible. One aspect that is particularly interesting is tailoring
the approach – and underlying basis functions – to the evaluation of a particular (tail)
risk measure, to boost performance, e.g., when estimating VaR or ES. One possibility is
using Importance Sampling for variance reduction, where the central idea is to select an
alternative probability measure for evaluation of the risks at the risk horizon (Glasserman et
al., 2000; Capriotti, 2008). Proceeding analogously to Section 4, it appears possible to derive
robust basis functions when replacing P with the importance sampling measure. Another
interesting extension is to combine our ideas with non-parametric smoothing approaches
for capital estimation. This is also pointed out by Risk and Ludkovski (2018, Sec. 5.3).
Integrating regression-based approaches with emulation techniques considered in their paper
presents a promising avenue for future research.
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Appendix
The first part of this Appendix collects all proofs and technical material. The second

part B contains supplemental analyses to the application Section 5 of the main text.

A Proofs and Technical Material

Proof. Proof of Lemma 2.1.

1. Let A ∈ Ft, 0 ≤ t ≤ τ . Then:

P̃(A) = EP̃ [1A] = EP

[
∂P̃
∂P

1A

]
= EP

[
EP

[
∂Q
∂P

EP
[
∂Q
∂P |Fτ

]1A
∣∣∣∣∣Fτ

]]

= EP

[
1A

EP
[
∂Q
∂P |Fτ

]EP
[
∂Q
∂P

∣∣∣∣Fτ]
]

= P(A).

2. Let X : Ω→ R be a random variable. Then:

EP̃ [X |Fτ ] =
1

EP
[
∂P̃
∂P |Fτ

]
︸ ︷︷ ︸

=1

EP

[
∂P̃
∂P

X

∣∣∣∣∣Fτ
]

= EP

[
X ∂Q

∂P

EP
[
∂Q
∂P |Fτ

]∣∣∣∣∣Fτ
]

=
1

EP
[
∂Q
∂P |Fτ

]EP
[
∂Q
∂P

X

∣∣∣∣Fτ] = EQ [X| Fτ ] .

Proof. Proof of Lemma 2.2. Linearity is obvious. For the proof of continuity, consider a
sequence h(n) → h ∈ H. Then:

EP
[
Lh(n) − Lh

]2

= EP

 T∑
j=τ

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

]2
= EP

∑
j,k

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

]
EP̃
[(
h

(n)
k − hk

)
(Yk) |Yτ

]
≤

∑
j,k

√
EP
[(

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

])2
]
×

√
EP
[(

EP̃
[(
h

(n)
k − hk

)
(Yk) |Yτ

])2
]

≤
∑
j,k

√
EP̃
[(
h

(n)
j − hj

)2
(Yj)

]
×

√
EP̃
[(
h

(n)
k − hk

)2
(Yk)

]
→ 0, n→∞,

where we used the Cauchy-Schwarz inequality, the conditional Jensen inequality, and the
tower property of conditional expectations.
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Proof. Proof of Lemma 2.3. Consider the operator L(j) mapping from L2(Rd,B, P̃Yj) to

L2(Rd,B,PYτ ). Since L(j) is the (conditional) expectation under the assumption that there
exists a joint density, it can be represented as:

L(j) x =

∫
Rd

x(y) πYj |Yτ (y|x) dy =

∫
Rd

x(y)
πYτ ,Yj(x, y)

πYτ (x)
dy

=

∫
Rd

x(y)
πYτ ,Yj(x, y)

πYj(y)πYτ (x)
πYj(y) dy =

∫
Rd

x(y) k(x, y)πYj(y) dy,

where x is an element of L2(Rd,B, P̃Yj), πYj(y) and πYτ (x) are marginal density functions for

Yj and Yτ in L2(Rd,B, P̃Yj) and L2(Rd,B,PYτ ), respectively, and k(x, y) =
πYτ ,Yj (x,y)

πYj (y)πYτ (x)
. Thus,

L(j) is an integral operator with kernel k(x, y). Moreover:∫
Rd

∫
Rd
|k(x, y)|2 πYj(y)πYτ (x) dy dx =

∫
Rd

∫
Rd
πYj |Yτ (y|x) πYτ |Yj(x|y) dy dx <∞.

Thus, L(j) is a Hilbert-Schmidt operator (e.g., Prop. VI.6.3 in Werner (2005)), and therefore
compact. Finally, L is the sum of L(j), j = τ, ..., T , and therefore also compact.

Proof. Proof of Proposition 3.1. PYτ is a regular Borel measure as a finite Borel measure
and hence L2

(
Rd,B,PYτ

)
is separable (see Proposition I.2.14 and p. 33 in Werner (2005)).

Now if {ek, k = 1, 2, . . . ,M} are independent, by Gram-Schmidt we can find an orthonormal
system S = {fk, k = 1, 2, . . . ,M} with lin{ek, k = 1, 2, . . . ,M} = linS. For S, on the other
hand, we can find an orthonormal basis {fk, k ∈ N} = S ′ ⊃ S. Hence:

Ĉ(M)
τ =

M∑
k=1

αk ek =
M∑
k=1

α̃k︸︷︷︸
〈Cτ ,fk〉

fk →
∞∑
k=1

α̃k fk = Cτ , M →∞,

where: ∥∥∥Ĉ(M)
τ − Cτ

∥∥∥2

=
∞∑

k=M+1

|〈Cτ , fk〉|2 → 0, M →∞,

by Parseval’s identity.
For the second part, we note that:

(α̂
(N)
1 , . . . , α̂

(N)
M )′ = α̂(N) =

(
A(M,N)

)−1 1

N

N∑
i=1

e
(
Y (i)
τ

)
V (i)
τ ,

where e(·) = (e1(·), . . . , eM(·))′ and A(M,N) =
[

1
N

∑N
i=1 ek(Y

(i)
τ ) el(Y

(i)
τ )
]

1≤k,l≤M
is invertible

for large enough N since we assume that the basis functions are linearly independent. Hence:

α̂(N) → α = (α1, . . . , αM)′ =
(
A(M)

)−1 EP̃

[
e (Yτ )

(
T∑
k=τ

xk

)]
P̃-a.s.,
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by the law of large numbers, where AM =
[
EP̃ [ek (Yτ ) el (Yτ )]

]
1≤k,l≤M

, so that:

Ĉ(M,N)
τ = e′ α̂(N) → e′α = Ĉ(M)

τ P̃-a.s.

Finally, for the third part, write:

V (i)
τ =

T∑
k=τ

xk
(
Y (i)
τ

)
=

M∑
j=1

αjej
(
Y (i)
τ

)
+ εj,

where E [εj|Yτ ] = 0,Var [εj|Yτ ] = Σ(Yτ ), and Cov [εi, εj|Yτ ] = 0. Thus (see, e.g., Section 6.13
in Amemiya (1985)):

√
N [α− α̂(N)] −→ Normal

0,
(
A(M)

)−1 [EP [ek(Yτ )el(Yτ )Σ(Yτ )]
]

1≤k, l≤M

(
A(M)

)−1︸ ︷︷ ︸
ξ̃

 ,
so that: √

N
[
Ĉ(M)
τ − Ĉ(M,N)

τ

]
= e′[α− α̂(N)]

√
N −→ Normal (0, ξ(M)),

where:
ξ(M) = e′ ξ̃ e. (26)

Proof. Proof of Corollary 3.1. Relying on the notation from the proof of Proposition 3.1, we
now have:

α̂(N) =
1

N

N∑
i=1

e
(
Y (i)
τ

)
V (i)
τ → α, N →∞

in L2(Ω,F , P̃) by the L2-version of the weak law of large numbers (Durett, 1996). Thus:

EP̃ [∣∣e(Yτ )′ α̂(N) − e(Yτ )′ α
∣∣] ≤ M∑

k=1

EP̃
[∣∣∣ek(Yτ )′ (α̂(N)

k − αk
)∣∣∣]

≤
M∑
k=1

√
EP̃ [e2

k(Yτ )]

√
EP̃
[
α̂

(N)
k − αk

]2

→ 0, N →∞.

The last assertion in the statement is a direct consequence of the Extended Namioka Theorem
in Biagini and Fritelli (2009).

Proof. Proof of Proposition 3.2. Since (V
(i)
τ , Y

(i)
τ ) are i.i.d. as Monte Carlo trials, the first

part of Assumption 1 in Newey (1997) is automatically satisfied. The conditions in the
proposition are then exactly Assumptions 1 (part 2), 2, and 3 in his paper for d = 0. Thus,
the claim follows by the first part of Theorem 1 in Newey (1997).
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Proof. Proof of Proposition 3.3. Analogously to the proof of Proposition 3.2, the first part of
Assumption 1 in Newey (1997) is automatically satisfied. The conditions in the proposition
are taken from the second part of Assumption 1, Assumption 8, the discussion following
Assumption 8, and Assumption 9 in his paper. Thus, the claim follows by the first part of
Theorem 4 in Newey (1997).

Proof. Proof of Corollary 3.2. The first assertion immediately follows from convergence in
distribution as discussed in Section 3.1. For the quantiles, the convergence for all conti-
nuity points of F−1

Cτ
follows from Proposition 3.1 and the standard proof of Skorokhod’s

representation theorem (see, e.g., Lemma 1.7 in Whitt (2002)).

Proof. Singular Value Decomposition of a Compact Operator (Section 4.2). Suppose the
operator A mapping from H1 to H2 is compact, where H1 and H2 are separable Hilbert
spaces. Then, A can be represented in the following form (see Section VI.3 in Werner (2005)
or Huang (2012)):

Ax =
∞∑
k=1

λk〈x, gk〉H1fk, (27)

where:

• 〈·, ·〉H1 denotes the inner product in H1;

• {λ2
k} are non-zero eigenvalues of A∗A and AA∗ with λ1 ≥ λ2 ≥ · · · , counted according

to their multiplicity. Here, λk is called the k-th singular value of A;

• {gk} ⊂ H1, called the (right) singular functions, are the orthonormal eigenfunctions of
A∗A; and

• {fk} ⊂ H2, called the (left) singular functions, are the orthonormal eigenfunctions of
AA∗ satisfying Agk = λk fk.

The representation (27) is called singular value decomposition (SVD) of A and the triple
(λk, gk, fk) is called singular system for A. The functional sequences, {gk}k≥1 and {fk}k≥1,
form complete orthonormal sequences of H1 and H2, respectively. The singular values λk
are non-negative and the only possible accumulation point is zero.

Proof. Proof of Proposition 4.1. We consider the approximation of L by an arbitrary rank-M
operator LF , which can be represented as:

LF =
M∑
k=1

αk 〈· , uk〉 ek,
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where {αk}Mk=1 ⊆ R+, {uk}Mk=1 are orthonormal in H, and {ek}Mk=1 are orthonormal in
L2
(
Rd,B,PYτ

)
. Denote by L∗F the operator when choosing (αk, uk, ek) = (ωk, sk, ϕk). Then:

inf
LF
‖L− LF‖2 ≤ sup

‖x‖=1

‖Lx− L∗Fx‖2

= sup
‖x‖=1

∥∥∥∥∥
∞∑

k=M+1

ωk〈x, sk〉ϕj

∥∥∥∥∥
2

= sup
‖x‖=1

∞∑
k=M+1

ω2
k 〈x, sk〉2 = ω2

M+1.

On the other hand, consider any alternative system (αk, uk, ek) for an arbitrary finite-rank
operator LF . Then choose a non-zero x0 such that x0 ∈ lin{s1, ..., sM+1} ∩ lin{u1, ..., uM}⊥ 6=
{0}. Note that L− LF is compact and bounded. Therefore:

‖L− LF‖2 ≥ ‖Lx0 − LF x0‖2

‖x0‖2
=
‖Lx0‖2

‖x0‖2

=

∑M+1
k=1 ω2

k|〈x0, sk〉|2∑M+1
k=1 |〈x0, sk〉|2

≥ ω2
M+1.

Hence:
inf
LF
‖L− LF‖2 = ω2

M+1 = ‖L− L∗F‖.

Now since:
inf
LF
‖L− LF‖2 = inf

{e1,...,eM}
‖L− P (e1, ..., eM) · L‖2,

where P (e1, ..., eM) denotes the orthogonal projection on the subspace spanned by (e1, ..., eM),
the claim follows by Equation (8).

Proof. Proof of Proposition 4.2. Proceeding as in Equation (10) and with Equation (8), we
obtain:

inf
αM

sup
y∈Y

∣∣∣∣∣Cτ (y)−
M∑
k=1

αM,k ek(y)

∣∣∣∣∣ ≤ sup
y∈Y

∣∣∣Cτ (y)− Ĉ(M)
τ (y)

∣∣∣
= sup

y∈Y
|
∞∑

k=M+1

ωk 〈x, sk〉ϕk(y)|

≤
∞∑

k=M+1

ωk |〈x, sk〉| sup
y∈Y
|ϕk(y)|

≤
∞∑

k=M+1

ωk ‖x‖ ‖sk‖ sup
y∈Y
|ϕk(y)|

=
∞∑

k=M+1

ωk ‖x‖ sup
y∈Y
|ϕk(y)| = O (ωM)
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for a fixed x since the {ϕk} are uniformly bounded, where the second and third inequalities
follow by the triangle and Cauchy-Schwarz inequalities, respectively.

Then, going through the assumptions of Proposition 3.2 withB = I and e(M) = (e1, ..., eM)′,
we obtain:

EP̃ [ẽ(M)(Yτ )ẽ
(M)(Yτ )

′] = I

due to the orthonormality of the singular functions. Therefore, the smallest eigenvalues is
bounded away from zero uniformly for every M. Moreover, for fixed y ∈ Y , ||ẽ(M)(y)|| =√
ϕ1(y)2 + · · ·ϕM(y)2, so that:

sup
y∈Y
||ẽ(M)(y)|| = sup

y∈Y

√
ϕ1(y)2 + · · ·ϕ1(y)2

≤

√√√√ M∑
k=1

sup
y∈Y

ϕk(y)2 ≤
√

max
1≤k≤M

sup
y∈Y

ϕk(y) ·M = C
√
M = ζ0(M)

since the {ϕk} are uniformly bounded. Thus, the claim follows by Proposition 3.2.

Proof. Proof of Lemma 4.1. The assertions on the conditional distributions are standard.
For showing that L is compact, we check that the transition and the reverse transition density
functions satisfy the condition in Lemma 2.3. Note that the transition density function can
be written as:

πYT |Yτ (y|x) = g(y;µT + Γ′Σ−1
τ (x− µτ ),ΣT |τ )

=
1

(2π)d/2|ΣT |τ |1/2
exp

[
−1

2

(
y − µT − Γ′Σ−1

τ (x− µτ )
)′

Σ−1
T |τ
(
y − µT − Γ′Σ−1

τ (x− µτ )
)]

=
1

(2π)d/2|ΣT |τ |1/2

∣∣Στ (Γ′)−1ΣT |τΓ−1Στ

∣∣1/2∣∣Στ (Γ′)−1ΣT |τΓ−1Στ

∣∣1/2
× exp

[
−1

2

(
x− µτ − Στ (Γ′)−1(y − µT )

)′
Σ−1
τ ΓΣ−1

T |τΓ′Σ−1
τ

(
x− µτ − Στ (Γ′)−1(y − µT )

)]
=
|Στ |
|Γ|

g
(
x;µτ + Στ (Γ′)−1(y − µT ),Στ (Γ′)−1ΣT |τΓ−1Στ

)
.
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We evaluate the following integral:∫
Rd
πYT |Yτ (y|x)πYτ |YT (x|y)dx

=
|Στ |
|Γ|

∫
Rd
g
(
x;µτ + Στ (Γ′)−1(y − µT ),Στ (Γ′)−1ΣT |τΓ−1Στ

)
× g

(
x;µτ + ΓΣ−1

τ (y − µT ),Στ |T
)
dx

=
|Στ |

|Γ|(2π)d/2
1∣∣Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T

∣∣1/2
× exp

[
− 1

2

(
Στ (Γ′)−1(y − µT )− ΓΣ−1

T (y − µT )
)′ (

Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T
)−1

×
(
Στ (Γ′)−1(y − µT )− ΓΣ−1

T (y − µT )
) ]

=
|Στ |

|Γ|(2π)d/2
1∣∣Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T

∣∣1/2
× exp

[
− 1

2
(y − µT )′

(
Γ−1Στ − Σ−1

T Γ′
) (

Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T
)−1 (

Στ (Γ′)−1 − ΓΣ−1
T

)︸ ︷︷ ︸
V −1

(y − µT )

]
= C1 × g(y;µT , V ),

where we use results on the product of Gaussian densities (Vinga, 2004) and where C1 is
an appropriate constant to obtain g(y;µT , V ). Therefore:∫

Rd

∫
Rd
πYT |Yτ (y|x)πYτ |YT (x|y) dx dy =

∫
Rd
C1g(y;µT , V ) dy = C1 <∞.

Proof. Proof of Lemma 4.2. L∗ can be found via:

〈Lh,m〉πYτ =

∫
Rd
Lh(x)m(x) πYτ (x) dx =

∫
Rd

[∫
Rd
h(y)πYT |Yτ (y|x) dy

]
m(x) πYτ (x) dx

=

∫
Rd
h(y)

[∫
Rd
m(x)πYτ |YT (x|y) dx

]
πYT (y) dy = 〈h, L∗m〉πYT ,

where L∗m(y) =
∫
Rdm(x)πYτ |YT (x|y) dx. We obtain for LL∗:

LL∗ϕ(x) =

∫
Rd
L∗ϕ(s)πYT |Yτ (s|x) ds

=

∫
Rd

[∫
Rd
ϕ(y)πYτ |YT (y|s) dy

]
πYT |Yτ (s|x) ds

=

∫
Rd
ϕ(y)

∫
Rd
πYτ |YT (y|s)πYT |Yτ (s|x) ds︸ ︷︷ ︸

KA(x,y)

dy.
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It is useful to express the reverse density as in the proof of Lemma 4.1:

g(y;µYτ |s,Στ |T ) =
|ΣT |
|Γ|

g
(
s;µT + ΣTΓ−1(y − µτ ), ΣTΓ−1Στ |T (Γ′)−1ΣT

)
.

Hence:

KA(x, y) =

∫
Rd
πYτ |YT (y|s)πYT |Yτ (s|x) ds

=
|ΣT |
|Γ|

∫
Rd
g
(
s;µT + ΣTΓ−1(y − µτ ), ΣTΓ−1Στ |T (Γ′)−1ΣT ]

)
× g(s;µT |x,ΣT |τ ) ds

=
|ΣT |
|Γ|
× 1

(2π)d/2
∣∣ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

∣∣1/2
× exp

(
− 1

2

(
ΣTΓ−1(y − µτ )− Γ′Σ−1

τ (x− µτ )
)′

×
(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)−1 (
ΣTΓ−1(y − µτ )− Γ′Σ−1

τ (x− µτ )
))

=
1

(2π)d/2
∣∣ΓΣ−1

T

(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)
Σ−1
T Γ′

∣∣1/2
× exp

(
− 1

2

(
y − µτ − ΓΣ−1

T Γ′Σ−1
τ (x− µτ )

)′
(Γ−1)′ΣT

(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)−1

× ΣTΓ−1
(
y − µτ − ΓΣ−1

T Γ′Σ−1
τ (x− µτ )

))
= g
(
y;µτ + ΓΣ−1

T Γ′Σ−1
τ︸ ︷︷ ︸

A

(x− µτ ), Στ − ΓΣ−1
T Γ′Σ−1

τ ΓΣ−1
T Γ′

)
= g
(
y;µτ +A(x− µτ )︸ ︷︷ ︸

µA(x)

, Στ −AΣτA
′︸ ︷︷ ︸

ΣA

)
= g
(
y;µA(x),ΣA

)
,

where in the third equality we again rely on results on the products of Gaussian densities
from Vinga (2004). L∗L can be derived analogously.

Proof. Proof of Lemma 4.3. We start by recalling the considerations from Khare and Zhou
(2009): Let (Xt) on Rd be a MAR(1) process satisfying the following stochastic difference
equation:

Xt = ΦXt−1 + ηt, t ≥ 1, (28)

where Φ ∈ Rd×d and (ηt)t≥1 are independent and identically distributed, ηt ∼ N(0, H). (Xt)
has a unique stationary distribution N(0,Σ) if and only if H = Σ−ΦΣΦ′, and the process is
reversible if and only if ΦΣ = ΣΦ′. Khare and Zhou (2009) show that if these assumptions
are satisfied, the transformed Markov operator for (28) has eigenvalues which are products of
eigenvalues of Φ and the corresponding eigenfunctions are products of Hermite polynomials.

Now note that for a random variable Y that is distributed according to KA(x, ·), we can
write:

Y − µτ = A(x− µτ ) + ζA, (29)

where ζ ∼ N(0,ΣA). Since from Lemma 4.2 we have that ΣA = Στ − AΣτA
′ and:

AΣτ = ΓΣ−1
T Γ′ = Στ A

′,
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for Σ = Στ the operator LL∗ has the same structure of the Markov operator for (28) that is
reversible and stationary.

Following the approach by Khare and Zhou (2009), denote by Σ
1/2
τ the square root matrix

of Στ . Then:
Σ−1/2
τ AΣ1/2

τ = Σ−1/2
τ ΓΣ−1

T Γ′Σ−1/2
τ

is symmetric and thus orthogonally diagonalizable:

Σ−1/2
τ AΣ1/2

τ = PΛP ′ ⇔ A = (Σ1/2
τ P ) Λ (P ′Σ−1/2

τ ).

In particular, the entries of the diagonal matrix Λ are the eigenvalues of A.
Now for the transformation (12) of the random vector Y from (29), zP (Y ), we obtain:

EKA
[
zP (Y )|x

]
= P ′Σ−1/2

τ A(x− µτ )
= P ′Σ−1/2

τ Σ1/2
τ PΛP ′Σ−1/2

τ (x− µτ ) = ΛzP (x),

and:

VarKA
[
zP (Y )|x

]
= P ′Σ−1/2

τ ΣAΣ−1/2
τ P

= P ′Σ−1/2
τ (Στ − AΣτA

′)Σ−1/2
τ P = I − Λ2.

Moreover:
EπYτ

[
zP (Yτ )

]
= P ′Σ−1/2

τ EπYτ [Yτ − µτ ] = 0

and:
VarπYτ

[
zP (Yτ )

]
= P ′Σ−1/2

τ ΣτΣ
−1/2
τ P = I.

The second part follows analogously.

Proof. Proof of Proposition 4.3. For fixed zPi (Y ), we obtain from Carrasco and Florens
(2011) that the univariate orthonormal Hermite polynomial of order ni is an eigenfunction
under KA :

EKA
[
hni(z

P
i (Y ))|x

]
= λnii hni(z

P
i (x)).

Moreover, the product of these polynomials are also eigenfunction since:

EKA
[
Πd
i=1hni(z

P
i (Y ))|x

]
= Πd

i=1EKA
[
hni(z

P
i (Y ))|x

]
=
(
Πd
i=1λ

ni
i

) (
Πd
i=1hni(z

P
i (x))

)
.

The orthogonality of the eigenfunctions is proved in Khare and Zhou (2009). Note that the
product of normalized Hermite polynomials is already normalized since:

EπYτ
[(

Πd
i=1hni(z

P
i (Y ))

)2
]

= EπYτ
[
Πd
i=1hni

(
zPi
)2

(Y )
]

= Πd
i=1EπYτ

[
hni
(
zPi (Y )

)2
]

= 1.

Right singular functions are obtained similarly from zQi (X).

Proof. Derivation of the Endowment Value in Equation (20) (Section 5.1).
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Following Duffie et al. (2000), we obtain:

Br(t, T ) =
1− e−α(T−t)

α
, Bµ(t, T ) =

eκ(T−t) − 1

κ
,

and A(t, T ) = exp

{
γ̄ (Br(t, T )− T + t) +

1

2

{
σ2
r

α2

(
T − t− 2Br(t, T ) +

1− e−2α(T−t)

2α

)
+
ψ2

κ2

(
T − t− 2Bµ(t, T ) +

e2κ(T−t) − 1

2κ

)
+

2ρ23σrψ

ακ

(
Bµ(t, T )− T + t+Br(t, T )− 1− e−(α−κ)(T−t)

α− κ

)}}
.

Proof. Proof of Lemma 5.1. Under P, the solutions of (16), (17), and (18) at time τ are:

qτ = q0 +

(
m− 1

2
σ2
S

)
τ + σS

∫ τ

0

dW S
s ,

rτ = r0e
−ατ + γ

(
1− e−ατ

)
+ σr

∫ τ

0

e−α(τ−t)dW r
t ,

µx+τ = µxe
κτ + ψ

∫ τ

0

eκ(τ−u)dW µ
u .

Thus, the joint Gaussian distribution of Yτ is given by: qτ
rτ
µx+τ

 ∼ N


 q0 +

(
m− 1

2σ
2
S

)
τ

r0e
−ατ + γ (1− e−ατ )

µxe
κτ

 ,
 σ2

S τ ρ12σSσrBr(0, τ) ρ13σSψBµ(0, τ)

ρ12σSσrBr(0, τ) σ2
r

1−e−2ατ

2α ρ23σrψ
1−e−(α−κ)τ

α−κ
ρ13σSψBµ(0, τ) ρ23σrψ

1−e−(α−κ)τ

α−κ ψ2 e2κτ−1
2κ


 ,

(30)

so that µτ and Στ are given by

µτ =

 q0 +
(
m− 1

2
σ2
S

)
τ

r0e
−ατ + γ (1− e−ατ )

µxe
κτ

 , Στ =

 σ2
S τ ρ12σSσrBr(0, τ) ρ13σSψBµ(0, τ)

ρ12σSσrBr(0, τ) σ2
r

1−e−2ατ

2α
ρ23σrψ

1−e−(α−κ)τ

α−κ
ρ13σSψBµ(0, τ) ρ23σrψ

1−e−(α−κ)τ

α−κ ψ2 e2κτ−1
2κ

 .
To derive the distribution under QE, first note that for τ ≤ s < T :

rs =e−α(s−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(s−τ)

)
+

σ2
r

2α2

(
e−α(T−s) − e−α(T+s−2τ)

)
− ρ23σrψ

κ

(
eκ(T−s) − e−α(s−τ)+κ(T−τ)

α− κ
− 1− e−α(s−τ)

α

)
+ σr

∫ s

τ
e−α(s−y)dZry ,
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so that the integral of
∫ T
τ
rs ds can be evaluated using the stochastic Fubini theorem:∫ T

τ

rsds =

(
1− e−α(T−τ)

α

)
rτ +

(
γ̄ − σ2

r

α2

)(
T − τ − 1− e−α(T−τ)

α

)
+

σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)
− ρ23σrψ

κ

(
eκ(T−τ) − 1

κ(α− κ)
− eκ(T−τ) − e−(α−κ)(T−τ)

α(α− κ)
− 1

α

(
T − τ − 1− e−α(T−τ)

α

))
+ σr

∫ T

τ

1− e−α(T−y)

α
dZr

y .

Thus, under QE with known Yτ , the solutions of (21), (22), and (23) are:

qT =qτ +

(
1− e−α(T−τ)

α

)
rτ +

(
γ̄ − σ2

r

α2

)(
T − τ − 1− e−α(T−τ)

α

)

+
σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)

− 1

2
σ2
S(T − τ)− ρ12σSσr

α

(
T − τ − 1− e−α(T−τ)

α

)
− ρ13σSψ

κ

(
eκ(T−τ) − 1

κ
− T + τ

)

− ρ23σrψ

κ

(
eκ(T−τ) − 1

κ(α− κ)
− eκ(T−τ) − e−(α−κ)(T−τ)

α(α− κ)
− 1

α

(
T − τ − 1− e−α(T−τ)

α

))

+ σS

∫ T

τ
dZSs + σr

∫ T

τ

1− e−α(T−y)

α
dZry ,

rT =e−α(T−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(T−τ)

)
+

σ2
r

2α2

(
1− e−2α(T−τ)

)
− ρ23σrψ

κ

(
1− e−(α−κ)(T−τ)

α− κ
− 1− e−α(T−τ)

α

)
+ σr

∫ T

τ
e−α(T−y)dZry ,

µx+T =eκ(T−τ)µx+τ −
ψ2

κ

(
e2κ(T−τ) − 1

2κ
− eκ(T−τ) − 1

κ

)
− ρ23σrψ

α

(
eκ(T−τ) − 1

κ
− 1− e−(α−κ)(T−τ)

α− κ

)

+ ψ

∫ T

τ
eκ(T−t)dZµt ,

so that the (Gaussian) conditional distribution of YT |Yτ is given by:

 qT
rT
µx+T

 |Yτ ∼ N


 µqT |qτ

µrT |rτ
µµx+T |µx+τ

 ,
 σ2

qT |qτ σqT ,rT |qτ ,rτ σqT ,µx+T |qτ ,µx+τ
σqT ,rT |qτ ,rτ σ2

rT |rτ σrT ,µx+T |rτ ,µx+τ
σqT ,µx+T |qτ ,µx+τ σrT ,µx+T |rτ ,µx+τ σ2

µx+T |µx+τ


︸ ︷︷ ︸

ΣT |τ

 ,

(31)
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where:

µqT |qτ = qτ +Br(τ, T )rτ +

(
γ̄ − σ2

r

α2

)(
T − τ − 1− e−α(T−τ)

α

)

+
σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)

− ρ23σrψ

κ

(
eκ(T−τ) − 1

κ(α− κ)
− eκ(T−τ) − e−(α−κ)(T−τ)

α(α− κ)
− 1

α

(
T − τ − 1− e−α(T−τ)

α

))

− 1

2
σ2
S(T − τ)− ρ12σSσr

α

(
T − τ − 1− e−α(T−τ)

α

)
− ρ13σSψ

κ

(
eκ(T−τ) − 1

κ
− T + τ

)
,

µrT |rτ = e−α(T−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(T−τ)

)
+

σ2
r

2α2

(
1− e−2α(T−τ)

)
− ρ23σrψ

κ

(
1− e−(α−κ)(T−τ)

α− κ
− 1− e−α(T−τ)

α

)
,

µµx+T |µx+τ =µx+τe
κ(T−τ) − ρ23σrψ

α

(
eκ(T−τ) − 1

κ
− 1− e−(α−κ)(T−τ)

α− κ

)

− ψ2

κ

(
e2κ(T−τ) − 1

2κ
− eκ(T−τ) − 1

κ

)
,

σ2
qT |qτ =σ2

S(T − τ) +
σ2
r

α2

(
T − τ − 2

1− e−α(T−τ)

α
+

1− e−2α(T−τ)

2α

)

+
2ρ12σSσr

α

(
T − τ − 1− e−α(T−τ)

α

)
,

σqT ,rT |qτ ,rτ = ρ12σSσr

(
1− e−α(T−τ)

α

)
+
σ2
r

α

(
1− 2e−α(T−τ) + e−2α(T−τ)

2α

)
,

σqT ,µx+T |qτ ,µx+τ = ρ13σSψ

(
eκ(T−τ) − 1

κ

)
+
ρ23σrψ

α

(
eκ(T−τ) − 1

κ
− 1− e−(α−κ)(T−τ)

α− κ

)
,

σ2
rT |rτ =σ2

r

(
1− e−2α(T−τ)

2α

)
,

σrT ,µx+T |rτ ,µx+τ = ρ23σrψ

(
1− e−(α−κ)(T−τ)

α− κ

)
,

σ2
µx+T |µx+τ =ψ2

(
e2κ(T−τ) − 1

2κ

)
.
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It is possible to write the conditional mean of YT given Yτ in the following affine form: µqT |qτ
µrT |rτ

µµx+T |µx+τ

 =

1 1−e−α(T−τ)
α

0
0 e−α(T−τ) 0
0 0 eκ(T−τ)


︸ ︷︷ ︸

H

 qτ
rτ
µx+τ

+ Cτ

=HYτ + Cτ ,

where Cτ is a constant matrix defined by remaining terms of mean vector of YT |Yτ after defin-
ing HYτ . The unconditional distribution of YT under P̃ is also Gaussian since Yτ and YT |Yτ
follow Gaussian distributions. Thus, it suffices to specify a mean vector and a covariance
matrix of YT under P̃ to specify its distribution:

µT = EP̃[YT ] = EP [EQE [YT |Yτ ]
]

= EP [HYτ + Cτ ] = Hµτ + Cτ ,

ΣT = CovP̃[YT ] = CovP [EQE [YT |Yτ ]
]

+ EP [CovQE [YT |Yτ ]
]

= CovP [HYτ + Cτ ] + EP [ΣT |τ
]

= HΣτH
′ + ΣT |τ .

Hence, YT ∼ N(µT , ΣT ).
The final step is to specify the joint distribution of Yτ and YT by finding Cov(Yτ , YT ).

Note that:

Γ = Cov(Yτ , YT ) = EP̃[YτY
′
T ]− EP̃[Yτ ]EP̃[Y ′T ]

= EP[EQE [YτY
′
T |Yτ ]]− µτµ′T

= EP [Yτ (Y
′
τH
′ + C ′τ )]− µτµ′T

= ΣτH
′.

Therefore, [
Yτ
YT

]
∼ N

([
µτ
µT

]
,

[
Στ Γ
Γ′ ΣT

])
.

B Supplemental Analyses to Section 5

B.1 Additional Analyses in the Gaussian Case (Section 5.2)

Comparison to Conventional Basis Functions.

Figure 6 shows supplemental results for the analysis in Figure 2, particularly JS divergences
and KS statistics. The conclusions are analogous to the KL and VaR results in Figure 2,
respectively.

Table 2 shows results for different basis functions for different payoffs, where we modify
the guaranteed annuity payment GT in the payoff definition (24). More precisely, we show
results for a less generous contract where we decrease the annuity by 5% (0.95GT ) and a
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Figure 6: Box-and-whisker plots for various statistical divergence measures and 99.5% VaR
calculated using different basis functions with M = 6; based on 300 runs with N = 3, 000, 000
sample paths each.
(Higher-oder terms: C1: q2τ , r

2
τ ; C2: q2τ , µ

2
x+τ ; C3: q2τ , qτ rτ ; C4: q2τ , qτµx+τ ; C5: q2τ , rτµx+τ ; C6: r2τ , µ

2
x+τ ; C7: r2τ , qτ rτ ; C8:

r2τ , qτµx+τ ; C9: r2τ , rτµx+τ ; C10: µ2
x+τ , qτ rτ ; C11: µ2

x+τ , qτµx+τ ; C12: µ2
x+τ , rτµx+τ ; C13: qτ rτ , qτµx+τ ; C14: qτ rτ , rτµx+τ ; C15:

qτµx+τ , rτµx+τ ).

more generous contract where we increase the annuity by 5% (1.05GT ). In addition to the
statistical divergences as in Table 1, we also report the first and third quartiles of 300 VaR
estimates based on different sample paths. The estimated “exact” 99.5% VaR when using
0.95GT is 137.89, and the “exact” 99.5% VaR for 1.05GT is 141.79. The results are analogous
to our analyses in the main text: Singular functions perform better than monomials, and
the difference can be substantial for M = 6 and 12.

M vs. N: The tradeoff between the approximations.

Figure 7 shows supplemental results for the analysis in Figure 3, particularly JS divergences
and VaR estimates. The conclusions for JS are analogous to KL, and the VaR results in line
with Figure 4.

Risk measure estimation.

As outlined in the main text, we repeat our VaR estimations for M = 16 basis functions
– using both, singular functions and monomials – where instead of OLS, we employ ridge
regression to fit the approximation.8 We choose the regularization parameter based on 10-fold
cross-validation. Figure 8 displays box-and-whisker plots for the 99.5% VaR for N = 50, 000

8The ridge regression coefficients, α
(N)
ridge, minimize the sum of squares plus a regularization term

η
∑M
k=2 α

2
k, where η is a regularization parameter. We assume that the first basis function is always constant.
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0.95GT 1.05GT

Div. Singular Monomials Singular Monomials

M = 4

KS 2.71× 10−2 2.98× 10−2 2.16× 10−2 2.59× 10−2

KL 2.25× 10−4 2.39× 10−4 1.98× 10−4 2.14× 10−4

JS 7.58× 10−3 7.80× 10−3 7.10× 10−3 7.38× 10−3

Q1,VaR 132.17 131.66 137.02 136.22
Q3,VaR 132.31 131.80 137.18 136.36

M = 6

KS 2.48× 10−3 5.90× 10−3 1.99× 10−3 4.94× 10−3

KL 4.61× 10−6 4.27× 10−5 4.43× 10−6 4.31× 10−5

JS 1.07× 10−3 3.27× 10−3 1.05× 10−3 3.29× 10−3

Q1,VaR 137.09 138.10 140.99 141.99
Q3,VaR 137.34 138.35 141.26 142.25

M = 12

KS 1.64× 10−3 1.70× 10−3 1.46× 10−3 1.58× 10−3

KL 5.99× 10−7 1.56× 10−6 5.97× 10−7 1.57× 10−6

JS 3.79× 10−4 6.22× 10−4 3.79× 10−4 6.26× 10−4

Q1,VaR 137.77 137.85 141.65 141.76
Q3,VaR 138.15 138.26 142.03 142.12

Table 2: Statistical divergence measures between the empirical density function based on
the “exact” realizations and the LSM approximation using different basis functions; mean of
300 runs with N = 3, 000, 000 sample paths each. Q1,VaR and Q3,VaR are the first and third
quartile of the distribution of the 99.5% VaR.
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Figure 7: JS and VaR results based on cross-validated number of basis function M



An LSM Approach to the Estimation of Enterprise Risk 48

132.5

135.0

137.5

140.0

142.5

145.0

Monomials Singular

Basis Functions

V
a
R

Box−and−Whisker plot for 99.5% VaR via Ridge Regression

(a) N = 50, 000

136

138

140

Monomials Singular

Basis Functions

Basis

Monomials

Singular

Box−and−Whisker plot for 99.5% VaR via Ridge Regression

(b) N = 3, 000, 000

Figure 8: Box-and-whisker plots for VaR at 99.5% calculated using the LSM algorithm
with ridge regression to fit parameters with different basis functions (M = 16) and different
numbers of simulations N ; based on 300 runs.

sample paths (left-hand panel (a)) and N = 3, 000, 000 sample paths (right-hand panel (b)),
using both singular functions and monomials as the basis functions.

Comparing the results to the VaR estimates from Figure 4a, we find that relying on a
regularized regression can be precarious. More precisely, while the box-and-whisker plot for
the singular functions approximation in the case N = 50, 000 seems to be roughly in line
with the results from Figure 4, the plot when using monomials as basis functions – while
notably tighter – now significantly undershoots and it no longer includes the “exact” VaR.
The findings for N = 3, 000, 000 are similar, although now here the “exact” VaR is outside
the whiskers also for the singular basis functions.

To provide intuition for these results, Figure 9 plots effective degrees of freedom (EDF)
for the fits underlying Figure 8 (we refer to Hastie et al. (2009) for the definition of EDF in
ridge regression). We notice that EDFs are very close to 15 for the singular functions, both
for N = 50, 000 and N = 3, 000, 000 (Panels (a) and (b)). Since 16 basis functions correspond
exactly to 15 degrees of freedom (the constant term is always included), the shrinkage coming
from the regularization is relatively minor – although it is clear from Figure 8b that the effect
is still significant enough to move the VaR estimates downward. In contrast, for the monomial
basis functions, the EDFs are around 10.9 and 13.25 for N = 50, 000 and N = 3, 000, 000,
respectively, so that here the shrinkage is substantial (Panels (c) and (d)) – explaining both
the compression and the shifting of the box-and-whisker plots.

Since the regularization parameter is chosen so as to minimize the mean-squared pre-
diction error across all realizations, it is not surprising that the predictions worsen in a
certain area of the distribution. Indeed, it appears that the incurred bias for gains in terms
of variance has an adverse effect for estimating VaR. For the singular functions, while the
impact on the VaR estimate is limited, this is because overall there is very little change in
the estimates relative to OLS – whereas for the monomial basis functions, the estimates are
zooming in on the wrong target.
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Figure 9: Histograms of EDFs for the ridge regression with singular functions and monomials
using M = 16 basis functions and different numbers of simulations N ; based on 300 runs.
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Figure 10: Box-and-whisker plots for the JS divergence and KS statistic calculated using
different basis functions and different M ; based on 500 runs with N = 1, 000, 000 sample
paths each.

B.2 Additional Analyses in the General Case (Section 5.3)

Figure 10 shows supplemental results for the analysis in Figure 5, particularly JS divergences
and KS statistics. The conclusions are analogous to the KL and VaR results in Figure 5,
respectively.
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